Symfony 5: The Fast Track

Fabien Potencier
https://fabien.potencier.org/
@fabpot
@fabpot

Symfony 5: The Fast Track
ISBN-13: 978-2-918390-37-4
Symfony SAS

92-98, boulevard Victor Hugo

92 110 Clichy
France

This work is licensed under the Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA
4.0)” license (https://creativecommons.org/licenses/by-nc-sa/4.0/).

Below is a human-readable summary of (and not a substitute for) the license (https://creativecommons.org/
licenses/by-nc-sa/4.0/legalcode).

You are free to
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material

* Attribution: You must give appropriate credit, provide a link to the license, and indicate if changes were
made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses
you or your use.

* Non Commercial: You may not use the material for commercial purposes.

¢ Share Alike: If you remix, transform, or build upon the material, you must distribute your contributions
under the same license as the original.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Symfony shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by
the information contained in this work.

If you find typos or errors, feel free to report them at support@symfony.com. This book is continuously
updated based on user feedback.

Locale en

Original English Text Version v1.0.14

Text Translation Version v1.0.14
Generated Code Version 5.0-3

Book Generated Date April 18, 2020

Contents at a Glance

Step 0: WRAL s Gt ADOUL?.......ccooiiiiiiiee e 25
Step 1: Checking your Work ENVIFONMENTccoeeeieuiiiiiiieeeeeeeiiiiiieeeeaaeeennn 29
Step 2: Introducing the PrOJEctcciiiiiuiiiiiiiiiiii et 33
Step 3: Going from Zero to Productionccc...eeeeeeeeiiiiiiiiiiiieeee e 39
Step 4: Adopting a Methodologyccouiiiiiiiiiiiiiiiiiiiee e 47
Step 5: Troubleshooting Problemsccccuiiiiiiiiiieiiiiee e, 49
Step 6: Creating @ CONrOlLercccuueiiiiiiiiiiiiiie e, 57
Step 7: Setting up a DAtabase.cceeuiiiiiiiiiiiiieiie e 65
Step 8: Describing the Data StrUCTUTEcccueueeiiiiiieeeeeieeee e 71
Step 9: Setting up an Admin Backendccccooovviiiiiiiiiiiiiiiii e 85
Step 10: Building the User INLETfACEcccuvvvveiiieeieiiiiciiiiieee e 93
Step 11: Branching the Codeccciiiiiiiiiiiiiiiiiii e 107
Step 12: Listening t0 EVENEScooiiiiiiiiiiiiiiiiiis i 115
Step 13: Managing the Lifecycle of Doctrine ODJectsccccueeuuecuiieeeniiinnnnn. 121
Step 14: Accepting Feedback with FOTmMScoovviiiiiiiiiiiiiiiieee e 131
Step 15: Securing the Admin Backend..............ccccociiiiiiiiiiiiiiiiiiieiieee e, 147
Step 16: Preventing Spam with an APcccccvviiiiiiiiiiiiieee e 155
SEEP 17: TOSHING ettt 163
Step 18: GOING ASYNC eeiiiiiiiiiiiiee e 179
Step 19: Making Decisions with @ Workflowcccccvviiiiiiiiiiiiiiiiiiieeeeeen 197
Step 20: Emailing Adminsccc.eeviiieieeiiiiiiiiiiee e 203
Step 21: Caching for Performanceouueeuueeeiieeeeeiiiiiiiieeee e 217
Step 22: Styling the User Interface with Webpack..............cccccoovviiiiianiiinnnn. 233
Step 23: ReSiZing IMAZEScccocuiiiiiiiii e 239
Step 24: RUNNING CrOMS....covieiiiiiiiiiiiiiiieeee et 245
Step 25: Notifying by all Meansccouueeeiuieiiiiieeeeiieeiiieeee e 251
Step 26: Exposing an API with API PLatformccccceeeviiiiiieiiiiiiiee e 267

Step 27: Building an SPAcoooiiiiiii i 277

Step 28: Localizing an Applicationcccevcueveiiieeiiiiiiiiiiiiiieee e 295
Step 29: Managing PerfOrmanceouuueuuiieeeiiiiiee e 309
Step 30: Discovering Symfony INternals..............ccccccueeeiniiiiiieiiiiiiee e 319
Step 31: WHAE'S NEXT?....ooeiiiiiiie ettt 325

vi

Table of Contents

Step 0: WRAL s Gt ADOUL?.......ccooiiiiiiiee e 25
Step 1: Checking your Work ENVITONIMENTcccueveeeiiiiiieeeaiiieee e, 29
T.0: A COMPULET .o 29
1.2: Opinionated CROICESccoouueeieeiiiiii et 30
T35 IDE it 30
1.4: Termuinal.....coooiviiiiiiiiic e 30
152 G it 30
)T 0 1 PP 31
1.7: COMPOSCT e 31
1.8: Docker and Docker COMPOSEeveeeeeeiiiiiiiiiiiiieeee e, 31
1.9: SYMFONY CLI....iiiiiiiiiiiieeeeee et 32
Step 2: Introducing the PTOJECEuuieeeeiiiiiiiiiiiiee et 33
2.1: Revealing the PrOJECtcccuueieeiiiiiiieeeeeiie et 33
2.2: Learning is Doing ... 34
2.3: Looking at the Final Infrastructure Diagramcccccceeeiuniereeennnnnee. 34
2.4: Getting the Project SOurce Code...........ccouiecuuueieiiiiaeeiiiiiiiiieeee e, 36
2.5: Navigating the SOUrce COdeccuuuiiiiiiiiiiiiiiiieeeiiieeeee e, 37
Step 3: Going from Zero t0 ProOQUCEIONcoeeiieuiiiieeiiiieeeeiiee e, 39
3.1: Initializing the ProOJectccouviiiiiiiiiiiiiiiiiiiic e 40
3.2: Creating some Public RESOUTCES..........coeeueeiiiiiiiiiiiaeiieee e 41
3.3: Launching a Local Web Serverccouuiiiiiiiiiiiieiiiee e 42
3.4: AddiNg A fAVICON.ooviiiiiiiiiiiiie e 43
3.5: Preparing for PrOQUCEION.ccccuveiieeeeiiiie e 43
3.6: GOING t0 PrOAUCTION ...oooeviiiiiiieiiiee e 44

Step 4: Adopting a Methodologycoueueiiiiiiiiiiiiiiii e, 47

4.1: Implementing a Git SEYALEZYueeeeiiiiiiieeiiiie et 47
4.2: Deploying to Production Continuouslyccooevevueeeiiieeeiiiiiiiiieennn. 48
Step 5: Troubleshooting ProbDlemscccccueeiiiiiiiieiiiiiieeee e 49
5.1: Installing more Dependenciescccccuuuueiiieeeiiiiiiiiiiiieee e 49
5.2: Understanding Symfony ENVIFONMENtS.cccuveeeeiiiiiieeeiiiiiee e 50
5.3: Managing Environment CONfigurations..........cc..eueeuueeeeeeiniieieeeaiiieeeennn 51
5.4: Logging all the TRiNgS......c...uvvviiiiieeiiiiiiiie et 51
5.5: Discovering the Symfony Debugging ToOlsccccouveiiiiieeiiiiiiie.. 52
5.6: Configuring Your IDEcooiiiiiieiiiiiie et 55
5.7: Debugg@ing ProOAUCLIONcccuuiieiiiiiiiiaeeeee et 55
Step 6: Creating a Controllerooouuiieiiiiiiie e, 57
6.1: Being Lazy with the Maker BUndlecccccovuviiiiiieiiiiiiiiiiiiieeeeeeenn, 57
6.2: Choosing a Configuration FOrmat............ccceecieiiiiiiiiieiniiiiee e, 58
6.3: Generating @ CONLTOLLETccoiviuiiiiiiiiiee e 59
6.4: Adding an EQSter EZQ..........cccuuiiiiiiiiiiiiieee et 61
Step 7: Setting up a DAtabase.cceeiiiiiiiiiiiiiiiiiiiiieiee e 65
7.1: Adding PostgreSQL to Docker COMPOSEccccueeeeeeiiiiiaaeiiiiiieaeeee 65
7.2: Starting Docker COMPOSE.uueeriuiiiiniiiiiiiit ettt 66
7.3: Accessing the Local Databasecccccceeiiiiiiiiiiiiiiiieiiiiieeeee 67
7.4: Adding PostgreSQL to SymfonyCloudccccccoeeeeiiiiiiiiiiiiiieeeeeee, 67
7.5: Accessing the SymfonyCloud Databaseccccccceuveeeeieeincieeaeannnee. 69
7.6: Exposing Environment Variablesccccccoouvviieiiiiiiiiaiiiiieeeee 70
Step 8: Describing the Data StrUCHUTE.........c..eeeieiiiiiiieeiieeeeee e, 71
8.1: Configuring Doctrine ORM.........cc.cccooviiimiiiiiiniiiiiniii e, 71
8.2: Understanding Symfony Environment Variable Conventions 72
8.3: Changing the Default DATABASE_URL Value in .envccceeeveveennn. 73
8.4: Creating ENtity CLASSESeeeieeeiiiiiiiiiiiiee et e e 73
8.5: LINRiNG ENLILIES «..vvvveeeeiiieiie ettt e e eeaeeee e 77
8.6: Adding mMOTe PrOPErties.ccuiuuuiiieiiiiiii ettt 81
8.7: Migrating the DAtabaseccccccuueuiiiiiieiiiiiiiiiiiie e 81

8.8: Updating the Local Databasecccccccoueuuiiiiiiiiiiieiiiiieeeeeeen 82

8.9: Updating the Production Databaseccccccuueiiieeeeiiiiiiiiiiieeeaaeann. 82
Step 9: Setting up an Admin Backendcccccccoeviiiiiiiiiiiiiiiiieee e 85
9.1: Configuring EASYAdMinccooiiiiiiiiiiiieeeeiccee e 85
9.2: Customizing EASYAAMINccooiiiiiiiiiiiiiee e 89
Step 10: Building the User INEErfacecccoueiieiiiiiiiieeiiiiiee et 93
10.1: INSEAIlING TWAG «.oeeeeiieeeeeee ettt e e e 93
10.2: Using Twig for the Templatesccoueoueeieiiiiiiiiaiiiiiieee e, 94
10.3: Using Twig in a Controllerccooiiiiiiiiiiiiiiiiiieeie e, 95
10.4: Creating the Page for a CONferencecccvuuuuiieeeeiiiieiiiiiiiieeeeeeeenn, 96
10.5: Linking Pages TOZEtNErc..uuuueiiiieiiiiiiiieeee e 99
10.6: Paginating the COMMENES..........ccccuueieeeiiiiiie et 100
10.7: Refactoring the CONIOlIErccuueiiiiiiiiiiiiiiiiie e, 104
Step 11: Branching the Codec..eiiiiiiiiiiiiiiieiiiee e, 107
11.1: Adopting a Git WOTRFIOWcooouiiiiiiiiiiiiiic e, 107
11.2: Describing your INfrastriCture.eeeeeeeeeeueiiiiieeeeeeeieeiiiieeeaaeeeenns 108
11.3: Creating Branchesooouueeuuieiiiiieee et 108
11.4: Storing Sessions i RediS............cccvueiiiiiiiiiiiiiiiiie e, 108
11.5: Deploying @ Branchcccccooouiiiiiiiiiiiie e, 110
11.6: Debugging Production Deployments before Deploying 111
11.7: Testing Production Deployments before Deploying............cccccccevveen. 112
11.8: Merging t0 PrOAUCTIONvvveeiiiiiiieeeeee et 112
11.9: Cle@NiNg UDeeeeeeiiie ettt 113
Step 12: Listening t0 EVENEScccciiiiiiiiiiiiiiiiiiiiiiiiiiiiiee e 115
12.1: Adding a Website Headerccccccceumiiiiiiiiiiiiiieiiiiee e, 115
12.2: Discovering Symfony EVENtS............ccueeeeeiiiiiiiiiiiiiieeee e 116
12.3: Implementing a SUDSCYIDETouuvieiiiiiiiiiiiiiiee e 117
12.4: Sorting Conferences by Year and Cityc..couveueviieeniiiiiaeeaiiieeeen, 118
Step 13: Managing the Lifecycle of Doctrine ODjJectsccccoeeeeecuuiieeenicnnnnnnn 121
13.1: Defining Lifecycle CallDacks..............cooooiiiniiiiiiiiiiiniiiiiic e, 121
13.2: Adding Slugs to CONfErencesccuuueiiiiuiiiiaiiiiiiiieeeiee e, 122

X1

13.3: Generating SIUGSc.oeuioueiiieiiiiie e 124

13.4: Defining a Complex Lifecycle Callbackcccccccovvivviiininiiiiannnn, 125
13.5: Configuring a Service in the CONLAINETcevvvevieeeiiiiiieeeeiiiieaeen, 126
13.6: Using Slugs in the Applicationccoceeiieeiiiiiiaaiiiiiiee e, 127
Step 14: Accepting Feedback with FOTmMScoovvviiieiiiiiieeeiiiiieeeeee 131
14.1: Generating a FOTm TYPEcccoeeiiiiiiiiiiiiiiiiiiiee e 131
14.2: Displaying @ FOTMcoiiuuiiiaiiiie et 132
14.3: Customizing a FOrm TyPecooviieiiiiiiiiiiiiiiiiic e 134
14.4: Validating MOAeLS.............ccouiiiiiiiiiiiiiiee et 136
14.5: Handling @ FOTMc.ooiiiiiiie e 138
14.6: Uploading Filescouiouuiiiiiiiiiie et 139
14.7: DebUging FOTTSviiiiiiiiiie et 141
14.8: Displaying Uploaded Photos in the Admin Backend 143
14.9: Excluding Uploaded Photos from Gitcccoveiiieeniiiiieeeiiiiieeeen, 144
14.10: Storing Uploaded Files on Production Serverscccccoeeeeennuecne. 144
Step 15: Securing the Admin Backend...............ccooovoiiiiiiiiiiiiiiiieeeeee 147
15.1: Defining a User ENLItYc.ueeeeiiiuieee et e et 147
15.2: Generating a Password for the Admin Usercooeveveeeiniieeeannnne. 149
15.3: Creating an AdMincoooieeuiiiiiieeee e 150
15.4: Configuring the Security Authenticationccccceeeeeceeeeeesecueeeeannne. 150
15.5: Adding Authorization Access Control Rules..............ccccccvveeeniinneannnne. 152
15.6: Authenticating via the Login FOTm..........cccccccoviiiiiiniiiiiieiiieee, 152
Step 16: Preventing Spam with an APIccccccoovviiiiiiiiiiiieee e 155
16.1: Signing up 0n ARISIEEeeeeeiiiiiie e, 155
16.2: Depending on Symfony HITTPClient Componentccccuveeeeeeeeann. 155
16.3: Designing a Spam Checker Classcooeveiiiiiiiiiiiiiiiiiiiiiiieeeee, 156
16.4: Using Environment Variablescccccceeuiiiiiiaiiiiiieeeiieaee, 157
16.5: StOTING SECTELS ..ccoeeviiiiiiiiiii e 158
16.6: Checking Comments fOr SPAML..........cuuueeeiiiiciiiiiiiieeeee e 159
16.7: Managing Secrets in PrOAQUCEIONcceiiieiiiiiiiiiieee e 160
SEEP 17: TOSHIMG et 163
17.1: Writing URit TESES «.c..uuuveeiiiiiiiiie i 163

Xii

17.2: Writing Functional Tests for Controllerscccccceimiiiiiiiinniineannne. 165

17.3: Defiming FiXTUTESvveeeiiiiiiie ettt 167
17.4: LOAAING FiXTUTESvveveiieeeeeeeieee ettt 169
17.5: Crawling a Website in Functional Testscccccveeeniiiiieeeniiieaeenn. 170
17.6: Working with a Test Databasecccccccouiiiiiiiiiiiiiiiaiiiieeee. 171
17.7: Submitting a Form in a Functional Test..........ccccccvveeeeeiiiiiiiiiiiieeeeeen, 172
17.8: Reloading the FixXtUresccouvuiiiiiimiiiiiiiiiiiec e, 173
17.9: Automating your Workflow with a Makefile..............ccccccvvevniinnannnne. 173
17.10: Resetting the Database after each Testcccccueeeiiecieiieiniiiieaaennn. 174
17.11: Using a real Browser for Functional Tests..........cccccouveeeeeiniiieeeannnne. 176
17.12: Running Black Box Functional Tests with Blackfire........................... 177
Step 18: GOING ASYIIC v 179
18.1: Flagging COMMENEScceeeiiieiiiiiiiieee e e et eae e 179
18.2: Understanding MeSSENZETuuuueeiieeeeeiiiiiiiieee e e e 182
18.3: Coding a Message Handlercccccoovvieiniiiiiniiiiiniiiiiic e, 183
18.4: Restricting Displayed COMMENES..........cccceeiieiiiiiiiaiiiiieeeeeeee, 186
18.5: Going ASync for Realccooouuviiiiiiiiiiiiiiiiiieee e 187
18.6: Adding RabbitMQ to the Docker Stackccccccoveeiiiiiiiiiiiiiiaaaan, 187
18.7: Restarting DOCRET SETVICESccucuuueeeeiiiiiiiee e, 188
18.8: Consuming MESSAZESeeeeeeeeiiiiiiiiiiiiiieiee et 188
18.9: Exploring the RabbitMQ Web Management Interface 189
18.10: Running Workers in the Background.................ccccccccovvvvviiviniinnannnn, 191
18.11: Retrying Failed MeSSAZES.cccuuueeeeiiiuiiieeaiiiiiee e, 192
18.12: Deploying RabbitMQ...........cccuviueiieaiiiiiie e, 193
18.13: Running Workers on SymfonyCloudcccccceeiiiiiiiiiiiniiiiianne. 194
Step 19: Making Decisions with @ Workflowcccocvviiiieiiiiiiiiiiiiiiieeeeens 197
19.1: Describing WOrRIOWSccoceuiiiiiiiiieeeeieeee e 198
19.2: Using @ WOTRFlOW.......ccoiiiiiiiiiiiiiiiiiee e 199
Step 20: Emailing Adminsccc..eeviiieiiiiiiiieiee e 203
20.1: Setting an Email for the Adminccccociiiiiiiiiiiiiiiiiieeeeeee, 203
20.2: Sending a Notification EMailccccooeieiiiiiiiieiiiiie e 204
20.3: Extending the Notification Email Templateccccocvvviiieeeennnnne. 206
20.4: Generating Absolute URLs in a Symfony Command 207

xiii

20.5: Wiring a Route to a CONLTOllercccoecuviiiiiieiiiiiiiiiiiiiiieeee e, 208

20.6: Using a Mail CatCherc...uvueiiiiieiiiiiiiiiiee e, 210
20.7: Accessing the Webmailocoeuiiiiiiiiiiiiiiiiieiiiieieeee e, 210
20.8: Managing Long-Running SCHiPES.........cccouuumuuumuuiiiaineeeeiiiiiiiiiiiiiaeene 212
20.9: Sending Emails Asynchronously............ccccovviiiiiiiiiiiiiiiiiiiiieeeeeee, 212
20.10: Testing EMQAILSooeuiiiiiiiiiiiiie et 213
20.11: Sending Emails on SymfonyCloudccoeeeeeiiiiiiiiiiiiiieeeeeee, 214
Step 21: Caching for Performancecuuecuueeeeiieeeeeiiiiiieeee e 217
21.1: Adding HTTP Cache Headers.............cccceuueeeiiieeeiiiiiiiiiiiiiieaeeeee, 217
21.2: Activating the Symfony HTTP Cache Kernelccccccevvveviiennnne.. 218
21.3: Avoiding SQL Requests With ESIcccccooiiiiiiiiiiiiiiieeeeeee 220
21.4: Purging the HTTP Cache for Testing...........uuueeeeeeeeiiiciiiiiiieeeeaeeeeenne, 224
21.5: Grouping similar Routes With @ Prefixcccccccveeeeiiiiiiiiiiiiiieeeeeeee, 226
21.6: Caching CPU/Memory Intensive Operationscccccueeeeeeeeeeennannnne. 227
21.7: Profiling and Comparing Performancecccoueeceeeeenieeeeeanennnen. 229
21.8: Configuring a Reverse Proxy Cache on Production............................. 229
21.9: Enabling ESI Support on Varnish...........ccccccceiieeeiiiiiiiiiiiiiieeeeeee, 230
21.10: Purging the Varnish Cachecccocvueiiiiiiiiiiiiiiiiiiieeeeeee, 231
Step 22: Styling the User Interface with Webpack..............cccccoovveiiieeiniiinn.n. 233
22,72 USITG SASS ettt 234
22.2: Leveraging BoOIStrapc.ccccccciiiiiiiiiiii e 235
22.3: Styling the HTML.......coooiuiiiiiiiiie et 236
22.4: BUILAING ASSCLS ...vvveeeeeeeeeeee et 236
Step 23: ReSIZING IMAZESccovvvieiieiiiiiiii et 239
23.1: Optimizing Images With ImMaginecccccceeeeeeeeiiiiiiiiiiieeeeeeeeene, 240
23.2: Adding a new Step in the Workflowcccoeuiiieiiiiiiieniiiiieeee. 241
23.3: Storing Uploaded Data in Production.............cccccoeeeeeeeeeniieneeeannnnee. 243
Step 24: RUNNING CTrOMS...eeeiiiiiiiiiiiiieee et 245
24.1: Cleaning up COMMENLScccuueeiiuiiiiiie ettt 245
24.2: Using Class Constants, Container Parameters, and Environment
VATIADIES ... 247
24.3: Creating a CLI COMMANGc...ovieiiiiiiiiaiiiiiieeeeee e 247

Xiv

24.4:

Step 25:

25.1:
25.2:
25.3:
25.4:
25.5:

Step 26:

26.1:
26.2:
26.3:
26.4:
26.5:

Step 27:

27.1:
27.2:
27.3:
27.4:
27.5:
27.6:
27.7:
27.8:
27.9:

Step 28:

28.1:
28.2:
28.3:
28.4:
28.5:
28.6:
28.7:
28.8:

Setting up a Cron on SymfonyCloud................cccovvvvviiiiiiieeiiiiinnnnn.. 249
Notifying by all MEANSc...ceeiiiiiiiiiiiiiiiiii et 251
Sending Web Application Notifications in the Browser 252
Notifying Admins by EMQilccccoovviiiiiiiiiiieiiiiiiiieeee e, 255
Chatting With AdMINScooooiiiiiiiiiee e 259
Going Asynchronous across the Boardcccccooevvciiiiiiiiieennnnn.. 265
Notifying Users by EMailccccceiiiiiiiiiiiiiiiiieeeeee e, 266
Exposing an API with API PLatformcccccceiiiiiiiiiiiiiiieeeee 267
Installing API PLAtfOTmMcooiiiiiiiiiiiiiiiiee e 267
Exposing an API for CONErencesuuuuuieeeeiiiiiiiiiiiiieeeeeeeeiiieeenn 268
Exposing an API for COMMENLSccecuueeeeeiiiiieeeeiiee e, 271
Restricting Comments exposed by the APcccccocvvvveeeiiiienaannnn. 273
Configuring CORS.....c.uiiiiiiiiie et 274
Building an SPAooouueeiiiii e 277
Creating the ApplicAtionccooviiiiiiiiiiiiic e 277
Creating the SPA Main Template.............coceeeuveieiiiieiiiiiiiiiiiiiieeeeeen, 279
Running an SPA in the BroWSerc..uvvveiiiieiiiiiiiiiieeee e 280
Adding a Router to handle Statescccooeieeiiiiiiiiiiiiiiieeeeieeen 281
SEYIING the SPA ..coooiiiieeee e 283
Fetching Data from the APL...........ccccoiuiiiiiiiiiiiiiiieeee e 285
Deploying the SPA in Productionccccceeeeeeeecieiiiiieeaeeiiieenn 291
Configuring CORS for the SPAcuuviiiiiiiiee e 292
Using Cordova to build a Smartphone Applicationcccccuee.... 293
Localizing an Applicationccccooeevieeiiiiiiiiieeeiie et 295
Internationalizing URLS...........cooovuiiiiiiiiiie et 295
Adding a Locale SWItCherc.uuvviiiiiiiiiiiiiiiiie e 298
Translating the INEerfaceccccuvvveiiieeeeiiiiiee e 300
Providing Translationscccccueeeeeieiiiee et 303
Translating FOTMS «.......oocuiiiiiiiiiiiiiiiit et 304
LOCAlIZING DALES ...t 305
Translating PIUTALScooiiiiiiiiiiiiiee e 305
Updating FUunctional TestS............uuueiiiieeiiiiiiiiiiiieee e 307

XV

Step 29: Managing PerfOrmancecccccuuvueiiieeeeiieiiiiiiiieeeeeeeeeeiiieeeaa e 309

29.1: Introducing BLACRFITEcc..vvvveiiiiiieeeieee e, 310
29.2: Setting Up the Blackfire Agent on Dockercccceevueeeeiiiieeennnnnne, 311
29.3: Fixing a non-working Blackfire Installationccccccovvvuveeennnnne.. 312
29.4: Configuring Blackfire in Productioncccceeevvviiinniicinoieeenne. 312
29.5: Configuring Varnish for BIAcRFiTeccooviiiiiiiiiiiiiiiiieeee 313
29.6: Profiling Web PAZEScccuuuueiiiiieeeeeeiiiee e 314
29.7: Profiling API RESOUTCESeeeeieeeieeeeaeiiiie e e e 315
29.8: Comparing Performancecccc..uuuueueeeeiiiiiiee e e 315
29.9: Writing Black Box Functional Testsccuecueieeiiiiiiieeiiiiieeeeee 315
29.10: Automating Performance Checksccccvuiieeiiiiiiiiiiiiiiiieeeeeee, 317
Step 30: Discovering Symfony Internals...........ccccccoeveeiiniiiiiiiiiiieeeeeeiiiieeen. 319
30.1: Understanding Symfony Internals with Blackfire............ccccc.ccevvennnn.. 319
30.2: Using the Blackfire Debug Addonccccoviieeiiiiiieeiiiieeeee. 323
Step 31: WHAE'S INEXL? ...ooeeeeeiieeee et 325

Xvi

Acknowledgments

[love books. Books that I can hold in hands.

The last time I wrote a book about Symfony was exactly 10 years ago. It
was about Symfony 1.4. I have never written about Symfony since then!

[was so excited to write again about Symfony that I finished the first draft
in a week. But the version you are reading took way more time. Writing
a book takes a lot of time and energy. From the cover design to the page
layout. From code tweaks to peer reviews. It is almost never finished.
You can always improve a section, enhance some piece of code, fix some
typos, or rewrite an explanation to make it shorter and better.

Writing a book is a journey that you don’t want to do alone. Many people
contributed directly or indirectly. Thank you all!

[want to sincerely thank all the great people who spent a lot of time
reviewing the content to spot typos and improve the content; some even
helped me write some of the code snippets:

Javier Eguiluz Kévin Dunglas
Ryan Weaver Tugdual Saunier
Titouan Galopin Grégoire Pineau

Nicolas Grekas Alexandre Salomé

Xvil

Translators

The official Symfony documentation is only available in English. We had
some translations in the past but we decided to stop providing them as
they were always out of sync. And outdated documentation is probably
worse than no documentation at all.

The main issue with translations is maintenance. The Symfony
documentation is updated every single day by dozens of contributors.
Having a team of volunteers translating all changes in near real time is
almost impossible.

However, translating a book like the one you are currently reading is
more manageable as I tried to write about features that won’t change
much over time. This is why the book contents should stay quite stable
over time.

But why would we ever want non-English documentation in a tech world
where English is the de facto default language? Symfony is used by
developers everywhere in the world. And some of them are less
comfortable reading English material. Translating some “getting started”
documentation is part of the Symfony diversity initiative in which we
strive to find ways to make Symfony as inclusive as possible.

As you can imagine, translating more than 300 pages is a huge amount
of work, and I want to thank all the people who helped translating this

book.

XViil

Company Backers

This book has been backed by people around the world who helped this
project financially. Thanks to them, this content is available online for
free and available as a paper book during Symfony conferences.

rrrrrrr
AAAAAAAAA

https://packagist.com/
darkmira blackfire.io
https://darkmira.io/
S
- D
o BN
basecom
https://basecom.de/ https://dats.team/
i 7 \
Sensio
https://sensiolabs.com/ https://les-tilleuls.coop/
redant « akeneo
https://redant.nl/ https://lwww.akeneo.com/

(]]
Qfacilet 1zl
by €DF

https://www.facile.it/ https://izi-by-edf.fr/

_/ setono

https://www.musement.com/ https://setono.com/

XixX

https://www.kickstarter.com/projects/fabpot/symfony-5-the-fast-track
https://packagist.com/
https://darkmira.io/
https://basecom.de/
https://sensiolabs.com/
https://redant.nl/
https://www.facile.it/
https://www.musement.com/
https://dats.team/
https://les-tilleuls.coop/
https://www.akeneo.com/
https://izi-by-edf.fr/
https://setono.com/

Individual Backers

Javier Eguiluz
Tugdual Saunier
Alexandre Salomé
Timo Bakx
Arkadius Stefanski
Oskar Stark

slaubi

Jérémy Romey
Nicolas Scolari

Guys & Gals at
SymfonyCasts

Roberto santana
Ismael Ambrosi
Mathias STRASSER
Platform.sh team
ongoing

Magnus Nordlander
Nicolas Séverin
Centarro

Lior Chamla

Art Hundiak
Manuel de Ruiter
Vincent Huck
Jérdme Nadaud
Michael Piecko
Tobias Schilling
ACSEO

Omines Internetbureau
Seamus Byrne

Pavel Dubinin

XX

@javiereguiluz

@tucksaun

https://alexandre.salome.fr

@TimoBakx
https://ar.kadi.us
@0skarStark

@jeremyFreeAgent

https://symfonycasts.com

@robertosanval

@iambrosi

https://roukmoute.github.io/

http://www.platform.sh
https://www.ongoing.ch
@magnusnordlander
@nico-incubiq

https://www.centarro.io

https://learn.web-develop.me

@ahundiak
https://www.optiwise.nl/

https://nadaud.io
@mpiecko
https://tschilling.dev
https://www.acseo.fr
https://www.omines.nl/
http://seamusbyrne.com
@geekdevs

Jean-Jacques PERUZZI
Alexandre Jardin
Christian Ducrot

Alexandre HUON
Frangois Pluchino
We Are Builders
Rector

[lyas Salikhov
Romaric Drigon
Lukd4s$ Moravec
Malik Meyer-Heder
Amrouche Hamza
Russell Flynn
Shrihari Pandit
Salma NK.
Nicolas Grekas
Roman lhoshyn
Radu Topala
Andrey Reinwald
JoliCode

Rokas Mikalkénas
Zeljko Mitic
Wojciech Kania
Andrea Cristaudo

Adrien BRAULT-
LESAGE

Cristoforo Stevio
Cervino

Michele Sangalli
Florian Reiner
lon Bazan
Marisa Clardy

“ https://1linkedin.com/in/jjperuzzi
©) @ajardin

“ http://ducrot.de

O @Aleksanthaar

© @francoispluchino

“ https://we.are.builders
€ @rectorphp

¥ @salikhov

¥ @romaricdrigon

© @morki

© @mehlichmeyer

¥ @cDaed

“ https://custard.no

¥ @shriharipandit

¥ @os_rescue

“ https://ihoshyn.com
“ https://www.trisoft.ro

“ https://www.facebook.com/andreinwald
© @JoliCode

O @strictify
© @wkania

“ https://andrea.cristaudo.eu/

© @AdrienBrault

“ http://www.steviostudio.it

“ http://florianreiner.com
©) @IonBazan
¥ @MarisaCodes

XxX1

Donatas Lomsargis http://donatas.dev
Johnny Lattouf @johnnylattouf
Duilio Palacios https://styde.net
Pierre Grimaud @pgrimaud
Marcos Labad Diaz @esmiz
Stephan Huber https://www.factorial.io
Loic Vernet https://www.strangebuzz.com
Daniel Knoch http://www.cariba.de
Emagma http://www.emagma.fr
Gilles Doge
Malte Wunsch @MalteWunsch

Jose Maria Valera

Reales @Chemaclass
Cleverway https://cleverway.eu/
Nathan @nutama

Abdellah EL https://connect.symfony.com/profile/
GHAILANI aelghailani

Solucionex https://www.solucionex.com
Elnéris Dang https://linkedin.com/in/elneris-dang/
Class Central https://www.classcentral.com/
Ike Borup https://idaho.dev/
Christoph Lithr https://www.christoph-luehr.com/
Zig Websoftware http://www.zig.nl
Dénes Fakan @DenesFakan
Danny van Kooten http://dvk.co
Denis Azarov http://azarov.de
Martin Poirier T. https://linkedin.com/in/mpoiriert/
Dmytro Feshchenko @dmytrof
Carl Casbolt https://www.platinumtechsolutions.co.uk/
[rontec https://www.irontec.com
Lukas Plimper https://lukaspluemper.de/
Neil Nand https://neilnand.co.uk

XX11

Andreas Moller
Alexey Buldyk

Page Carbajal
Florian Voit
Webmozarts GmbH
Alexander M. Turek
Zan Baldwin

Ben Marks, Magento

“ https://localheinz.com
“ https://buldyk.pw

“ https://pagecarbajal.com
7 https://rootsh31l.de

“ https://webmozarts.com
©) @derrabus

¥ @ZanBaldwin

" http://bhmarks.com

xxlil

Family Love

Family support is everything. A big thank-you to my wife, Héléne and
my two wonderful children, Thomas and Lucas, for their continuous

support.

Enjoy Thomas’s illustration... and the book!

N\ \ '(What is your
\\ o N (ast wish, Master
) ‘ZDevefoyer?
9)

v

i

XXIV

Step 0
What is it about?

Symfony is one of the most successful PHP projects. It is both a strong
full-stack framework and a popular set of reusable components.

With version 5, the project has probably reached maturity. I can feel that
everything we have done in the past 5 years come together nicely. New
low-level components, high-level integrations with other software, tools
helping developers improve their productivity. The developer experience
has improved substantially without sacrificing flexibility. It has never
been so fun to use Symfony for a project.

If you are new to Symfony, the arrival of Symfony 5 is the right time
to learn how to develop an application, step by step. This book shows
developers the power of the framework and how it can improve their
productivity.

If you are already a Symfony developer, you should rediscover it. The
framework has evolved dramatically during the last few years and the
developer experience has improved significantly. I have the feeling that
many Symfony developers are still “stuck” with old habits and that they
have a hard time embracing the new ways of developing applications with
Symfony. I can understand some of the reasons. The pace of evolution is

25

staggering. When working full-time on a project, developers do not have
time to follow everything happening in the community. I know first hand
as I would not pretend that I can follow everything myself. Far from it.

And it is not just about new ways of doing things. It is also about
new components: HTTP client, Mailer, Workflow, Messenger. They are
game changers. They should change the way you think about a Symfony
application.

[also feel the need for a new book as the Web has evolved a lot. Topics
like APIs, SPAs, containerization, Continuous Deployment, and many
others should be discussed now.

Your time is precious. Don’t expect long paragraphs, nor long
explanations about core concepts. The book is more about the journey.
Where to start. Which code to write. When. How. I will try to generate
some interest on important topics and let you decide if you want to learn
more and dig further.

[don’t want to replicate the existing documentation either. Its quality
is excellent. I will reference the documentation copiously in the “Going
Further” section at the end of each step/chapter. Consider this book as a
list of pointers to more resources.

The book describes the creation of an application, from scratch to
production. We won’t develop everything to make it production ready
though. The result won’t be perfect. We will take shortcuts. We might
even skip some edge-case handling, validation or tests. Best practices
won’t be respected all the time. But we are going to touch on almost every
aspect of a modern Symfony project.

While starting to work on this book, the very first thing I did was code
the final application. I was impressed with the result and the velocity I
was able to sustain while adding features, with very little effort. That’s
thanks to the documentation and the fact that Symfony 5 knows how to
get out of your way. [am sure that Symfony can still be improved in many
ways (and I have taken some notes about possible improvements), but the
developer experience is way better than a few years ago. I want to tell the
world about it.

The book is divided into steps. Each step is sub-divided into sub-steps.
They should be fast to read. But more importantly, I invite you to code as

26

https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Single-page_application
https://en.wikipedia.org/wiki/OS-level_virtualization
https://en.wikipedia.org/wiki/Continuous_deployment

you read. Write the code, test it, deploy it, tweak it.

Last, but not least, don’t hesitate to ask for help if you get stuck. You
might hit an edge case or a typo in the code you wrote might be difficult

to find and fix. Ask questions. We have a wonderful community on Slack
and Stack Overflow.

Ready to code? Enjoy!

27

https://symfony.com/slack
https://stackoverflow.com/questions/tagged/symfony

Step 1
Checking your Work
Environment

Before starting to work on the project, we need to check that everyone has
a good working environment. It is very important. The developers tools
we have at our disposal today are very different from the ones we had 10
years ago. They have evolved a lot, for the better. It would be a shame to
not leverage them. Good tools can get you a long way.

Please, don’t skip this step. Or at least, read the last section about the
Symfony CLI.

1.1 A Computer

You need a computer. The good news is that it can run on any popular
OS: macOS, Windows, or Linux. Symfony and all the tools we are going
to use are compatible with each of these.

29

1.2 Opinionated Choices

[want to move fast with the best options out there. I made opinionated
choices for this book.

PostgreSQL is going to be our choice for the database engine.

RabbitMQ is the winner for queues.

1.3 IDE

You can use Notepad if you want to. I would not recommend it though.

[used to work with Textmate. Not anymore. The comfort of using
a “real” IDE is priceless. Auto-completion, use statements added and
sorted automatically, jumping from one file to another are a few features
that will boost your productivity.

[would recommend using Visual Studio Code or PhpStorm. The former is
free, the latter is not but has a better integration with Symfony (thanks to
the Symfony Support Plugin). It is up to you. I know you want to know
which IDE I am using. [am writing this book in Visual Studio Code.

1.4 Terminal

We will switch from the IDE to the command line all the time. You can
use your IDE’s built-in terminal, but I prefer to use a real one to have
more space.

Linux comes built-in with Terminal. Use iTerm2 on macOS. On
Windows, Hyper works well.

1.5 Git

My last book recommended Subversion for version control. It looks like
everybody is using Git now.

30

https://www.postgresql.org/
https://www.rabbitmq.com/
https://code.visualstudio.com/
https://www.jetbrains.com/phpstorm/
https://plugins.jetbrains.com/plugin/7219-symfony-support
https://iterm2.com/
https://hyper.is/
https://git-scm.com/

On Windows, install Git bash.

Be sure you know how to do the common operations like running git
clone, git log, git show, git diff, git checkout, ...

1.6 PHP

We will use Docker for services, but I like to have PHP installed on my
local computer for performance, stability, and simplicity reasons. Call me
old school if you like, but the combination of a local PHP and Docker
services is the perfect combo for me.

Use PHP 7.3 if you can, maybe 7.4 depending on when you are reading
this book. Check that the following PHP extensions are installed or install
them now: intl, pdo pgsql, xsl, amgp, gd, openssl, sodium. Optionally
install redis and curl as well.

You can check the extensions currently enabled via php -m.

We also need php-fpm if your platform supports it, php-cgi works as well.

1.7 Composer

Managing dependencies is everything nowadays with a Symfony project.
Get the latest version of Composer, the package management tool for
PHP.

If you are not familiar with Composer, take some time to read about it.
You don’t need to type the full command names: composer req does

the same as composer require, use composer rem instead of composer
remove, ...

1.8 Docker and Docker Compose

Services are going to be managed by Docker and Docker Compose. Install
them and start Docker. If you are a first time user, get familiar with the

31

https://gitforwindows.org/
https://getcomposer.org/
https://docs.docker.com/install/
https://docs.docker.com/install/

tool. Don’t panic though, our usage will be very straightforward. No
fancy configurations, no complex setup.

1.9 Symfony CLI

Last, but not least, we will use the symfony CLI to boost our productivity.
From the local web server it provides, to full Docker integration and
SymfonyCloud support, it will be a great time saver.

Install the Symfony CLI and move it under your $PATH. Create a
SymfonyConnect account if you don’t have one already and log in via
symfony login.

To use HTTPS locally, we also need to install a CA to enable TLS support.
Run the following command:

$ symfony server:ca:install

Check that your computer has all needed requirements by running the
following command:

$ symfony book:check-requirements

If you want to get fancy, you can also run the Symfony proxy. It is optional
but it allows you to get a local domain name ending with .wip for your
project.

When executing a command in a terminal, we will almost always prefix it
with symfony like in symfony composer instead of just composer, or symfony
console instead of ./bin/console.

The main reason is that the Symfony CLI automatically sets some
environment variables based on the services running on your machine
via Docker. These environment variables are available for HTTP requests
because the local web server injects them automatically. So, using symfony
on the CLI ensures that you have the same behavior across the board.

Moreover, the Symfony CLI automatically selects the “best” possible PHP
version for the project.

32

https://symfony.com/download
https://connect.symfony.com/
https://symfony.com/doc/current/setup/symfony_server.html#enabling-tls
https://symfony.com/doc/current/setup/symfony_server.html#setting-up-the-local-proxy

Step 2
Introducing the Project

We need to find a project to work on. It is quite a challenge as we need
to find a project large enough to cover Symfony thoroughly, but at the
same time, it should be small enough; I don’t want you to get bored
implementing similar features more than once.

2.1 Revealing the Project

As the book has to be released during SymfonyCon Amsterdam, it might
be nice if the project is somehow related to Symfony and conferences.
What about a guestbook? A livre d’or as we say in French. I like the old-
fashioned and outdated feeling of developing a guestbook in 2019!

We have it. The project is all about getting feedback on conferences: a list
of conferences on the homepage, a page for each conference, full of nice
comments. A comment is composed of some small text and an optional
photo taken during the conference. I suppose I have just written down all
the specifications we need to get started.

The project will contain several applications. A traditional web application

33

https://en.wikipedia.org/wiki/Guestbook

with an HTML frontend, an API, and an SPA for mobile phones. How
does that sound?

2.2 Learning is Doing

Learning is doing. Period. Reading a book about Symfony is nice. Coding
an application on your personal computer while reading a book about
Symfony is even better. This book is very special as everything has been
done to let you follow along, code, and be sure to get the same results as
[had locally on my machine when I coded it initially.

The book contains all the code you need to write and all the commands
you need to execute to get the final result. No code is missing. All
commands are written down. This is possible because modern Symfony
applications have very little boilerplate code. Most of the code we will
write together is about the project’s business logic. Everything else is
mostly automated or generated automatically for us.

2.3 Looking at the Final Infrastructure Diagram

Even if the project idea seems simple, we are not going to build an “Hello
World”-like project. We won’t only use PHP and a database.

The goal is to create a project with some of the complexities you might
find in real-life. Want a proof? Have a look at the final infrastructure of
the project:

34

peis g Jew3 59

!
s &

A DWggey T0sasbisog
souwnsuo> 090)
sbesan (O LRI m

ls |

s qom @\uu Jonasgam @\U
i & s L5
wopendde (o wopeyddy
abeg-apus o Auojusks @ - o ()

ﬁ| AP dLIH Ystuien @

abeiois iy

5oy wsworg 7

' |

InDWHgqey InDWHaGeY

ol o

I

Sp3y onAIgqey
oo
rm St
=0 0
4/ R
N
~.
Jouuny
pnopfuouits
~.
propAuoywis G

Ll

Tosaibisoq

rews 59 s

%M.bo -« BN WMM
o
SIpay. ﬁ

sounsup 90
= o 41

N2 G 0] E

) fuojuiks

uopeyddy
ity)

wedgap
ot &

f o

pog @ Siapo

pedgapm
e]

e .@@v

s Qo 0]
M Auojuiks
wopedde (g
abeg-affus

!

AR JLIH @

o ddy aieg-aus

125/ 1)

H

ik
4

enopio) aypedy @
|

auoydueus

t

4
UM

]

|

Iasmoig

#

55

One of the great benefit of using a framework is the small amount of code
needed to develop such a project:

e 20 PHP classes under src/ for the website;

550 PHP Logical Lines of Code (LLOC) as reported by PHPLOC,;

40 lines of configuration tweaks in 3 files (via annotations and
YAML), mainly to configure the backend design;

20 lines of development infrastructure configuration (Docker);

100 lines of production infrastructure configuration (SymfonyCloud);

5 explicit environment variables.

Ready for the challenge?

2.4 Getting the Project Source Code

To continue on the old-fashioned theme, I could have created a CD
containing the source code, right? But what about a Git repository
companion instead?

Clone the guestbook repository somewhere on your local machine:

$ symfony new --version=5.0-3 --book guestbook

This repository contains all the code of the book.

Note that we are using symfony new instead of git clone as the command
does more than just cloning the repository (hosted on Github under
the the-fast-track organization: https://github.com/the-fast-track/
book-5.0-3). It also starts the web server, the containers, migrates the
database, loads fixtures, ... After running the command, the website
should be up and running, ready to be used.

The code is 100% guaranteed to be synchronized with the code in the
book (use the exact repository URL listed above). Trying to manually
synchronize changes from the book with the source code in the repository
is almost impossible. I tried in the past. I failed. It is just impossible.
Especially for books like the ones I write: books that tells you a story

36

https://github.com/sebastianbergmann/phploc
https://github.com/the-fast-track/book-5.0-3

about developing a website. As each chapter depends on the previous
ones, a change might have consequences in all following chapters.

The good news is that the Git repository for this book is automatically
generated from the book content. You read that right. I like to automate
everything, so there is a script whose job is to read the book and create
the Git repository. There is a nice side-effect: when updating the book,
the script will fail if the changes are inconsistent or if I forget to update
some instructions. That’s BDD, Book Driven Development!

2.5 Navigating the Source Code

Even better, the repository is not just about the final version of the code
on the master branch. The script executes each action explained in the
book and it commits its work at the end of each section. It also tags each
step and substep to ease browsing the code. Nice, isn’t it?

If you are lazy, you can get the state of the code at the end of a step by
checking out the right tag. For instance, if you’d like to read and test the
code at the end of step 10, execute the following:

$ symfony book:checkout 10

Like for cloning the repository, we are not using git checkout but symfony
book:checkout. The command ensures that whatever the state you are
currently in, you end up with a functional website for the step you ask for.
Be warned that all data, code, and containers are removed by this
operation.

You can also check out any substep:

$ symfony book:checkout 10.2

Again, I highly recommend you code yourself. But if you get stuck, you
can always compare what you have with the content of the book.

Not sure that you got everything right in substep 10.2? Get the diff:

$ git diff step-10-1...step-10-2

37

And for the very first substep of a step:
$ git diff step-9...step-10-1

Want to know when a file has been created or modified?

$ git log -- src/Controller/ConferenceController.php

You can also browse diffs, tags, and commits directly on GitHub. This is
a great way to copy/paste code if you are reading a paper book!

38

Step 3
Going from Zero to Production

[like to go fast. I want our little project to be live as fast as possible. Like
now. In production. As we haven’t developed anything yet, we will start
by deploying a nice and simple “Under construction” page. You will love
it!

Spend some time trying to find the ideal, old fashioned, and animated
“Under construction” GIF on the Internet. Here is the one I'm going to
use:

rrrsrnng,

[told you, it is going to be a lot of fun.

39

http://clipartmag.com/images/website-under-construction-image-6.gif

3.1 Initializing the Project

Create a new Symfony project with the symfony CLI tool we have
previously installed together:

$ symfony new guestbook --version=5.0
$ cd guestbook

This command is a thin wrapper on top of Composer that eases the creation
of Symfony projects. It uses a project skeleton that includes the bare
minimum dependencies; the Symfony components that are needed for
almost any project: a console tool and the HTTP abstraction needed to
create Web applications.

If you have a look at the GitHub repository for the skeleton, you will
notice that it is almost empty. Just a composer.json file. But the guestbook
directory is full of files. How is that even possible? The answer lies in
the symfony/flex package. Symfony Flex is a Composer plugin that hooks
into the installation process. When it detects a package for which it has a
recipe, 1t executes It.

The main entry point of a Symfony Recipe is a manifest file that describes
the operations that need to be done to automatically register the package
in a Symfony application. You never have to read a README file to
install a package with Symfony. Automation is a key feature of Symfony.

As Git is installed on our machine, symfony new also created a Git
repository for us and it added the very first commit.

Have a look at the directory structure:

—— bin/

—— Ccomposer.json
—— composer.lock
—— config/

—— public/

—— src/

—— symfony. lock
—— var/

—— vendor/

The bin/ directory contains the main CLI entry point: console. You will
use it all the time.

40

https://github.com/symfony/skeleton

The config/ directory is made of a set of default and sensible
configuration files. One file per package. You will barely change them,
trusting the defaults is almost always a good idea.

The public/ directory is the web root directory, and the index.php script
is the main entry point for all dynamic HTTP resources.

The src/ directory hosts all the code you will write; that’s where you will
spend most of your time. By default, all classes under this directory use
the App PHP namespace. It is your home. Your code. Your domain logic.
Symfony has very little to say there.

The var/ directory contains caches, logs, and files generated at runtime by
the application. You can leave it alone. It is the only directory that needs
to be writable in production.

The vendor/ directory contains all packages installed by Composer,
including Symfony itself. That’s our secret weapon to be more
productive. Let’s not reinvent the wheel. You will rely on existing libraries
to do the hard work. The directory is managed by Composer. Never
touch it.

That’s all you need to know for now.

3.2 Creating some Public Resources

Anything under public/ is accessible via a browser. For instance, if you
move your animated GIF file (name it under-construction.gif) into a
new public/images/ directory, it will be available at a URL like
https://localhost/images/under-construction.gif.

Download my GIF image here:

$ mkdir public/images/
$ php -r "copy('http://clipartmag.com/images/website-under-construction-
image-6.gif', 'public/images/under-construction.gif');"

41

3.3 Launching a Local Web Server

The symfony CLI comes with a Web Server that is optimized for
development work. You won’t be surprised if I tell you that it works
nicely with Symfony. Never use it in production though.

From the project directory, start the web server in the background (-d

flag):

$ symfony server:start -d

The server started on the first available port, starting with 8000. As a
shortcut, open the website in a browser from the CLI:

$ symfony open:local

Your favorite browser should take the focus and open a new tab that
displays something similar to the following:

/

A You're seeing this page because you haven't configured any homepage URL.

%

Welcome to

Symfony 5.0.1

° /home/fabien/projects/guestbook

Your application is now ready and you can start working on it.

To troubleshoot problems, run symfony server:log; it tails the logs
from the web server, PHP, and your application.

Browse to /images/under-construction.gif. Does it look like this?

42

/images/under-construction.gif

[[///17111/
WEBSITE
UNDER
CONSTRUCTION ‘
\

Satisfied? Let’s commit our work:

$ git add public/images
$ git commit -m'Add the under construction image'

3.4 Adding a favicon

To avoid being “spammed” by 404 HTTP errors in the logs because of a
missing favicon requested by browsers, let’s add one now:

$ php -r "copy('https://symfony.com/favicon.ico', 'public/favicon.ico");"
$ git add public/
$ git commit -m'Add a favicon'

3.5 Preparing for Production

What about deploying our work to production? I know, we don’t even
have a proper HTML page yet to welcome our users. But being able to see
the little “under construction” image on a production server would be a
great step forward. And you know the motto: deploy early and often.

You can host this application on any provider supporting PHP... which
means almost all hosting providers out there. Check a few things though:
we want the latest PHP version and the possibility to host services like a
database, a queue, and some more.

[have made my choice, it’s going to be SymfonyCloud. It provides
everything we need and it helps fund the development of Symfony.

The symfony CLI has built-in support for SymfonyCloud. Let’s initialize a
SymfonyCloud project:

43

https://symfony.com/cloud

$ symfony project:init

This command creates a few files needed by SymfonyCloud, namely
.symfony/services.yaml, .symfony/routes.yaml, and .symfony.cloud.yaml.

Add them to Git and commit:

$ git add .
$ git commit -m"Add SymfonyCloud configuration”

Using the generic and dangerous git add . works fine as a .gitignore
file has been generated that automatically excludes all files we don’t
want to commit.

3.6 Going to Production

Deploy time?

Create a new SymfonyCloud Project:

$ symfony project:create --title-"CGuestbook" --plan-development

This command does a lot:

e The first time you launch this command, authenticate with your
SymfonyConnect credentials if not done already.

* [t provisions a new project on SymfonyCloud (you get 7 days for free
on any new development project).

Then, deploy:
$ symfony deploy
The code is deployed by pushing the Git repository. At the end of the

command, the project will have a specific domain name you can use to
access 1t.

Check that everything worked fine:

44

$ symfony open:remote

You should get a 404, but browsing to /images/under-construction.gif
should reveal our work.

Note that you don’t get the beautiful default Symfony page on
SymfonyCloud. Why? You will learn soon that Symfony supports several
environments and SymfonyCloud automatically deployed the code in the
production environment.

If you want to delete the project on SymfonyCloud, use the
project:delete command.

Q Going Further

The Symfony Recipes Server, where you can find all the available
recipes for your Symfony applications;

* The repositories for the official Symfony recipes and for the recipes
contributed by the community, where you can submit your own
recipes;

* The Symfony Local Web Server,
* The SymfonyCloud documentation.

45

https://flex.symfony.com/
https://github.com/symfony/recipes
https://github.com/symfony/recipes-contrib
https://github.com/symfony/recipes-contrib
https://symfony.com/doc/current/setup/symfony_server.html
https://symfony.com/doc/cloud

Step4

Adopting a Methodology

Teaching is about repeating the same thing again and again. [won’t do
that. I promise. At the end of each step, you should do a little dance and
save your work. It is like Ctr1+S but for a website.

4.1 Implementing a Git Strategy

At the end of each step, don’t forget to commit your changes:

$ git add .
$ git commit -m'Add some new feature'

You can safely add “everything” as Symfony manages a .gitignore file for
you. And each package can add more configuration. Have a look at the
current content:

.gitignore

###> symfony/framework-bundle ###
/.env.local
/.env.local.php

47

/.env.*.local

/public/bundles/

/var/

/vendor/

###< symfony/framework-bundle ###

The funny strings are markers added by Symfony Flex so that it knows
what to remove if you decide to uninstall a dependency. I told you, all the
tedious work is done by Symfony, not you.

[t could be nice to push your repository to a server somewhere. GitHub,
GitLab, or Bitbucket are good choices.

If you are deploying on SymfonyCloud, you already have a copy of the Git
repository, but you should not rely on it. It is only for deployment usage.
[t is not a backup.

4.2 Deploying to Production Continuously

Another good habit is to deploy frequently. Deploying at the end of each
step is a good pace:

$ symfony deploy

48

Step 5
Troubleshooting Problems

Setting up a project is also about having the right tools to debug
problems.

5.1 Installing more Dependencies

Remember that the project was created with very few dependencies. No
template engine. No debug tools. No logging system. The idea is that you
can add more dependencies whenever you need them. Why would you
depend on a template engine if you develop an HTTP API or a CLI tool?

How can we add more dependencies? Via Composer. Besides “regular”
Composer packages, we will work with two “special” kinds of packages:

e Symfony Components: Packages that implement core features and
low level abstractions that most applications need (routing, console,
HTTP client, mailer, cache, ...);

* Symfony Bundles: Packages that add high-level features or provide
integrations with third-party libraries (bundles are mostly contributed

49

by the community).

To begin with, let’s add the Symfony Profiler, a time saver when you need
to find the root cause of a problem:

$ symfony composer req profiler --dev

profiler is an alias for the symfony/profiler-pack package.

Aliases are not a Composer feature, but a concept provided by Symfony
to make your life easier. Aliases are shortcuts for popular Composer
packages. Want an ORM for your application? Require orm. Want to
develop an API? Require api. These aliases are automatically resolved to
one or more regular Composer packages. They are opinionated choices
made by the Symfony core team.

Another neat feature is that you can always omit the symfony vendor.
Require cache instead of symfony/cache.

Do you remember that we mentioned a Composer plugin named
symfony/flex before? Aliases are one of its features.

5.2 Understanding Symfony Environments

Did you notice the --dev flag on the composer req command? As the
Symfony Profiler is only useful during development, we want to avoid it
being installed in production.

Symfony supports the notion of environments. By default, it has built-in
support for three, but you can add as many as you like: dev, prod, and
test. All environments share the same code, but they represent different
configurations.

For instance, all debugging tools are enabled in the dev environment. In
the prod one, the application is optimized for performance.

Switching from one environment to another can be done by changing the
APP_ENV environment variable.

When you deployed to SymfonyCloud, the environment (stored in

50

APP_ENV) was automatically switched to prod.

5.3 Managing Environment Configurations

APP_ENV can be set by using “real” environment variables in your terminal:

$ export APP_ENV=dev

Using real environment variables is the preferred way to set values like
APP_ENV on production servers. But on development machines, having to
define many environment variables can be cumbersome. Instead, define
them in a .env file.

A sensible .env file was generated automatically for you when the project
was created:

.env

###> symfony/framework-bundle ###
APP_ENV=dev
APP_SECRET=c292727316317225a358e3albbbed8a
#TRUSTED PROXIES=127.0.0.1,127.0.0.2
#TRUSTED _HOSTS='"localhost|example\.com$'
###< symfony/framework-bundle ###

o Any package can add more environment variables to this file thanks to
their recipe used by Symfony Flex.

The .env file is committed to the repository and describes the default
values from production. You can override these values by creating a
.env.local file. This file should not be committed and that’s why the
.gitignore file is already ignoring it.

Never store secret or sensitive values in these files. We will see how to
manage secrets in another step.

5.4 Logging all the Things

Out of the box, logging and debugging capabilities are limited on new

51

projects. Let’s add more tools to help us investigate issues in
development, but also in production:

$ symfony composer req logger

For debugging tools, let’s only install them in development:

$ symfony composer req debug --dev

5.5 Discovering the Symfony Debugging Tools

If you refresh the homepage, you should now see a toolbar at the bottom
of the screen:

/

A You're seeing this page because you haven't configured any homepage URL.

Welcome to

Symfony 5.0.1

° /home/fabien/projects/guestbook

Your application is now ready and you can start working on it.

< > [X)
. ahn
Documentation Tutorials Community
404 81ms 4ove| @ 1|) 3ms 7 7 Ed sever @ 501 X

The first thing you might notice is the 404 in red. Remember that this
page is a placeholder as we have not defined a homepage yet. Even if the
default page that welcomes you is beautiful, it is still an error page. So

52

the correct HTTP status code is 404, not 200. Thanks to the web debug
toolbar, you have the information right away.

If you click on the small exclamation point, you get the “real” exception
message as part of the logs in the Symfony profiler. If you want to see the
stack trace, click on the “Exception” link on the left menu.

Whenever there is an issue with your code, you will see an exception page
like the following that gives you everything you need to understand the
issue and where it comes from:

@ Symfony Exception & symfony Docs (o] Symfony Support

ResourceNotFoundException » NotFoundHttpException HTTP 404 Not Found

No route found for "GET /"

Logs [l Stack Traces 2

Symfony\Component\HttpKernel\Exception\ E]
NotFoundHttpException

in vendor/symfony/http-kernel/EventListener/RouterListener.php (line 136)

in vendor/symfony/event-dispatcher/Debug/WrappedListener.php -> onKernelRequest (line 117)
in vendor/symfony/event-dispatcher/EventDispatcher.php -> __invoke (line 230)

in vendor/symfony/event-dispatcher/EventDispatcher.php -> callListeners (line 59)

in vendor/symfony/event-dispatcher/Debug/Tr i php -> di: (line 151)

404 65ms 20ve| @ 1|) 1ms Ed sever @ 501 X

Take some time to explore the information inside the Symfony profiler by
clicking around.

Logs are also quite useful in debugging sessions. Symfony has a
convenient command to tail all the logs (from the web server, PHP, and
your application):

$ symfony server:log
Let’s do a small experiment. Open public/index.php and break the PHP

code there (add foobar in the middle of the code for instance). Refresh the
page in the browser and observe the log stream:

Dec 21 10:04:59 |DEBUG| PHP PHP Parse error: syntax error, unexpected 'use’
(T_USE) in public/index.php on line 5 path="/usr/bin/php7.42" php="7.42.0"
Dec 21 10:04:59 |ERROR| SERVER GET (500) / ip="127.0.0.1"

53

The output is beautifully colored to get your attention on errors.

Another great debug helper is the Symfony dump() function. It is always
available and allows you to dump complex variables in a nice and
interactive format.

Temporarily change public/index.php to dump the Request object:

--- a/public/index.php
+++ b/public/index.php
@@ -23,5 +23,8 @@ if ($trustedHosts = $ SERVER['TRUSTED HOSTS'] ??
$_ENV['TRUSTED HOSTS'] ?? false
$kernel = new Kernel($ SERVER['APP_ENV'], (bool) $ SERVER['APP DEBUG']);
$request = Request::createFromGlobals();
$response = $kernel->handle($request);
+
+dump($request);
+
$response->send();
$kernel->terminate($request, $response);

When refreshing the page, notice the new “target” icon in the toolbar;
it lets you inspect the dump. Click on it to access a full page where
navigating is made simpler:

/

A You're seeing this page because you haven't configured any homepage URL.

index.php line 27

404 16ms 20vB @1) 4ms €)1 Ed sever @ 501 X

Revert the changes before committing the other changes done in this step:

54

$ git checkout public/index.php

5.6 Configuring your IDE

In the development environment, when an exception is thrown, Symfony
displays a page with the exception message and its stack trace. When
displaying a file path, it adds a link that opens the file at the right line
in your favorite IDE. To benefit from this feature, you need to configure
your IDE. Symfony supports many IDEs out of the box; 'm using Visual
Studio Code for this project:

--- a/config/packages/framework.yaml
+++ b/config/packages/framework.yaml
@@ -14,3 +14,5 @@ framework:

#fragments: true

php_errors:

log: true

+ ide: vscode
Linked files are not limited to exceptions. For instance, the controller in
the web debug toolbar becomes clickable after configuring the IDE.

5.7 Debugging Production
Debugging production servers is always trickier. You don’t have access to

the Symfony profiler for instance. Logs are less verbose. But tailing the
logs is possible:

$ symfony logs

You can even connect via SSH on the web container:

$ symfony ssh

Don’t worry, you cannot break anything easily. Most of the filesystem is

55

read-only. You won’t be able to do a hot fix in production. But you will
learn a much better way later in the book.

Q Going Further

SymfonyCasts Environments and Config Files tutorial,

SymfonyCasts Environment Variables tutorial,

SymfonyCasts Web Debug Toolbar and Profiler tutorial;

Managing multiple .env files in Symfony applications.

56

https://symfonycasts.com/screencast/symfony-fundamentals/environment-config-files
https://symfonycasts.com/screencast/symfony-fundamentals/environment-variables
https://symfonycasts.com/screencast/symfony/debug-toolbar-profiler
https://symfony.com/doc/current/configuration.html#managing-multiple-env-files

Step 6
Creating a Controller

Our guestbook project is already live on production servers but we
cheated a little bit. The project doesn’t have any web pages yet. The
homepage is served as a boring 404 error page. Let’s fix that.

When an HTTP request comes in, like for the homepage
(http://localhost:8000/), Symfony tries to find a route that matches the
request path (/ here). A route is the link between the request path and a
PHP callable, a function that creates the HTTP response for that request.

These callables are called “controllers”. In Symfony, most controllers are
implemented as PHP classes. You can create such a class manually, but
because we like to go fast, let’s see how Symfony can help us.

6.1 Being Lazy with the Maker Bundle

To generate controllers effortlessly, we can use the symfony/maker-bundle
package:

$ symfony composer req maker --dev

57

As the maker bundle is only useful during development, don’t forget to
add the --dev flag to avoid it being enabled in production.

The maker bundle helps you generate a lot of different classes. We will
use it all the time in this book. Each “generator” is defined in a command
and all commands are part of the make command namespace.

The Symfony Console built-in list command lists all commands
available under a given namespace; use it to discover all generators
provided by the maker bundle:

$ symfony console list make

6.2 Choosing a Configuration Format

Before creating the first controller of the project, we need to decide on the
configuration formats we want to use. Symfony supports YAML, XML,
PHP, and annotations out of the box.

For configuration related to packages, YAML is the best choice. This is
the format used in the config/ directory. Often, when you install a new
package, that package’s recipe will add a new file ending in .yaml to that
directory.

For configuration related to PHP code, annotations are a better choice as
they are defined next to the code. Let me explain with an example. When
a request comes in, some configuration needs to tell Symfony that the
request path should be handled by a specific controller (a PHP class).
When using YAML, XML or PHP configuration formats, two files are
involved (the configuration file and the PHP controller file). When using
annotations, the configuration is done directly in the controller class.

To manage annotations, we need to add another dependency:

$ symfony composer req annotations

You might wonder how you can guess the package name you need to
install for a feature? Most of the time, you don’t need to know. In many
cases, Symfony contains the package to install in its error messages.
Running symfony make:controller without the annotations package for

58

instance would have ended with an exception containing a hint about
installing the right package.

6.3 Generating a Controller

Create your first Controller via the make:controller command:

$ symfony console make:controller ConferenceController

The command creates a ConferenceController class under the src/
Controller/ directory. The generated class consists of some boilerplate
code ready to be fine-tuned:

src/Controller/ConferenceController.php

App\Controller

Symfony\Bundle\FrameworkBundle\Controller\AbstractController
Symfony\Component\HttpFoundation\Response
Symfony\Component\Routing\Annotation\Route

ConferenceController AbstractController

Vot

* @Route("/conference"”, name="conference")
*/
index

$this->render('conference/index.html.twig'
‘controller name' 'ConferenceController’

The @Route("/conference", name="conference") annotation is what makes
the index() method a controller (the configuration is next to the code that
it configures).

When you hit /conference in a browser, the controller is executed and a
response is returned.

Tweak the route to make it match the homepage:

59

--- a/src/Controller/ConferenceController.php

+++ b/src/Controller/ConferenceController.php

@@ -8,7 +8,7 @@ use Symfony\Component\Routing\Annotation\Route;
class ConferenceController extends AbstractController

{
/**
- * @Route("/conference". name="conference")
+ * @Route("/", name="homepage")
*/
public function index()
{

The route name will be useful when we want to reference the homepage in
the code. Instead of hard-coding the / path, we will use the route name.

Instead of the default rendered page, let’s return a simple HTML one:

--- a/src/Controller/ConferenceController.php
+++ b/src/Controller/ConferenceController.php
@@ ‘316 +3)7 @@

namespace App\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;
+use Symfony\Component\HttpFoundation\Response;
use Symfony\Component\Routing\Annotation\Route;

class ConferenceController extends AbstractController
@@ -12,8 +13,13 @@ class ConferenceController extends AbstractController

*/
public function index()
{
- return $this->render('conference/index.html.twig", [
- "controller name' => 'ConferenceController’,
- N:
+ return new Response(<<<EOF
+<html>
+ <body>
+
+ </body>
+</html>
+EOF
+)
}
}

Refresh the browser:

60

The main responsibility of a controller is to return an HT TP Response for
the request.

6.4 Adding an Easter Eqg

To demonstrate how a response can leverage information from the
request, let’s add a small Easter egg. Whenever the homepage contains a
query string like ?hello=Fabien, let’s add some text to greet the person:

--- a/src/Controller/ConferenceController.php
+++ b/src/Controller/ConferenceController.php
@@ -3,6 +3,7 @@

namespace App\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;
+use Symfony\Component\HttpFoundation\Request;

use Symfony\Component\HttpFoundation\Response;

use Symfony\Component\Routing\Annotation\Route;

@@ -11,11 +12,17 @@ class ConferenceController extends AbstractController
/**
* @Route("/", name="homepage")
*/

- public function index()

+ public function index(Request $request)

{

$greet = '';
if ($name = $request->query->get('hello')) {

$greet = sprintf('<hi>Hello %s!</h1>", htmlspecialchars($name));
}

+ + + + +

return new Response(<<<EOF
<html>
<body>

61

https://en.wikipedia.org/wiki/Easter_egg_(media)#In_computing

+ $greet

</body>
</html>

Symfony exposes the request data through a Request object. When
Symfony sees a controller argument with this type-hint, it automatically
knows to pass it to you. We can use it to get the name item from the query
string and add an <h1> title.

Try hitting / then /?hello=Fabien in a browser to see the difference.

Notice the call to htmlspecialchars() to avoid XSS issues. This is
something that will be done automatically for us when we switch to a
proper template engine.

We could also have made the name part of the URL:

--- a/src/Controller/ConferenceController.php

+++ b/src/Controller/ConferenceController.php

@@ -9,13 49,19 @@ use Symfony\Component\Routing\Annotation\Route;
class ConferenceController extends AbstractController

{

/**

- * @Route("/". name="homepage")
+ * @Route("/hello/{name}", name="homepage")

*/
- public function index()
+ public function index(string $name = '")
{
+ $greet = '';
+ if ($name) {
+ $greet = sprintf('<hi>Hello %s!</h1>", htmlspecialchars($name));
I }
+
return new Response(<<<EOF
<html>
<body>
+ $greet

</body>
</html>

The {name} part of the route is a dynamic route parameter - it works like a
wildcard. You can now hit /hello then /hello/Fabien in a browser to get

62

the same results as before. You can get the value of the {name} parameter
by adding a controller argument with the same name. So, $name.

e Going Further

The Symfony Routing system,;
» SymfonyCasts Routes, Controllers & Pages tutorial,
* Annotations in PHP;
* The HttpFoundation component;
» XSS (Cross-Site Scripting) security attacks;
* The Symfony Routing Cheat Sheet.

63

https://symfony.com/doc/current/routing.html
https://symfonycasts.com/screencast/symfony/route-controller
https://www.doctrine-project.org/projects/doctrine-annotations/en/1.6/annotations.html
https://symfony.com/doc/current/components/http_foundation.html
https://owasp.org/www-community/attacks/xss/
https://github.com/andreia/symfony-cheat-sheets/blob/master/Symfony4/routing_en_part1.pdf

Step 7
Setting up a Database

The Conference Guestbook website is about gathering feedback during
conferences. We need to store the comments contributed by the
conference attendees in a permanent storage.

A comment is best described by a fixed data structure: an author, their
email, the text of the feedback, and an optional photo. The kind of data
that can be best stored in a traditional relational database engine.

PostgreSQL is the database engine we will use.

7.1 Adding PostgreSQL to Docker Compose

On our local machine, we have decided to use Docker to manage services.
Create a docker-compose.yaml file and add PostgreSQL as a service:

docker-compose.yaml

version: '3’

services
database

65

image: postgres:1l-alpine

environment
POSTGRES_USER: main
POSTGRES_PASSWORD: main
POSTGRES DB: main

ports: |5432

This will install a PostgreSQL server at version 11 and configure some
environment variables that control the database name and credentials.
The values do not really matter.

We also expose the PostgreSQL port (5432) of the container to the local
host. That will help us access the database from our machine.

The pdo_pgsql extension should have been installed when PHP was set
up in a previous step.

7.2 Starting Docker Compose

Start Docker Compose in the background (-d):

$ docker-compose up -d

Wait a bit to let the database start up and check that everything is running
fine:
$ docker-compose ps

Name Command State Ports

guestbook database 1 docker-entrypoint.sh postgres Up 0.0.0.0:32780->5432/tcp

If there are no running containers or if the State column does not read Up,
check the Docker Compose logs:

$ docker-compose logs

66

7.3 Accessing the Local Database

Using the psql command-line utility might prove useful from time to
time. But you need to remember the credentials and the database name.
Less obvious, you also need to know the local port the database runs on
the host. Docker chooses a random port so that you can work on more
than one project using PostgreSQL at the same time (the local port is part
of the output of docker-compose ps).

If you run psql via the Symfony CLI, you don’t need to remember
anything.

The Symfony CLI automatically detects the Docker services running for
the project and exposes the environment variables that psql needs to
connect to the database.

Thanks to these conventions, accessing the database via symfony run is

much easier:

$ symfony run psql

If you don’t have the psql binary on your local host, you can also run
1t via docker:

$ docker exec -it guestbook database 1 psql -U main -W main

7.4 Adding PostgreSQL to SymfonyCloud

For the production infrastructure on SymfonyCloud, adding a service
like PostgreSQL should be done in the currently empty .symfony/
services.yaml file:

.symfony/services.yaml

db
type: postgresql:11
disk: 1024
size: S

67

The db service is a PostgreSQL database at version 11 (like for Docker)
that we want to provision on a small container with 1GB of disk.

We also need to “link” the DB to the application container, which is
described in .symfony.cloud.yaml:

.symfony.cloud.yaml

relationships
database: "db:postgresql”

The db service of type postgresql is referenced as database on the
application container.

The last step is to add the pdo_pgsql extension to the PHP runtime:

.symfony.cloud.yaml
runtime
extensions

pdo_pgsql
#f other extensions here

Here is the full diff for the .symfony.cloud.yaml changes:

--- a/.symfony.cloud.yaml
+++ b/.symfony.cloud.yaml
@@ -4,6 +4,7 @@ type: php:7.3

runtime:
extensions:
+ - pdo_pgsql
- apcu
- mbstring
- sodium
@@ -12,6 +13,9 @@ runtime:
build:

flavor: none

+relationships:
+ database: "db:postgresql"
+
web:
locations:
A

Commit these changes and then re-deploy to SymfonyCloud:

68

$ git add .
$ git commit -m'Configuring the database’
$ symfony deploy

7.5 Accessing the SymfonyCloud Database

PostgreSQL is now running both locally via Docker and in production on
SymfonyCloud.

As we have just seen, running symfony run psql automatically connects to
the database hosted by Docker thanks to environment variables exposed
by symfony run.

If you want to connect to PostgreSQL hosted on the production
containers, you can open an SSH tunnel between the local machine and
the SymfonyCloud infrastructure:

$ symfony tunnel:open --expose-env-vars

By default, SymfonyCloud services are not exposed as environment
variables on the local machine. You must explicitly do so by using the --
expose-env-vars flag. Why? Connecting to the production database is a
dangerous operation. You can mess with real data. Requiring the flag is
how you confirm that this is what you want to do.

Now, connect to the remote PostgreSQL database via symfony run psql as
before:

$ symfony run psql

When done, don’t forget to close the tunnel:

$ symfony tunnel:close

To run some SQL queries on the production database instead of
getting a shell, you can also use the symfony sql command.

69

7.6 Exposing Environment Variables

Docker Compose and SymfonyCloud work seamlessly with Symfony
thanks to environment variables.

Check all environment variables exposed by symfony by executing symfony
var:export:

$ symfony var:export

PGHOST=127.0.0.1
PGPORT=32781
PGDATABASE=main
PGUSER=main
PGPASSWORD=main
...

The PG* environment variables are read by the psql utility. What about
the others?

When a tunnel is open to SymfonyCloud with the --expose-env-vars flag
set, the var:export command returns remote environment variables:

$ symfony tunnel:open --expose-env-vars
$ symfony var:export
$ symfony tunnel:close

Q Going Further

SymfonyCloud services;

SymfonyCloud tunnel,

PostgreSQL documentation;

docker-compose commands.

70

https://symfony.com/doc/master/cloud/services/intro.html#available-services
https://symfony.com/doc/master/cloud/services/intro.html#connecting-to-a-service
https://www.postgresql.org/docs/
https://docs.docker.com/compose/reference/

Step 8
Describing the Data Structure

To deal with the database from PHP, we are going to depend on Doctrine,
a set of libraries that help developers manage databases:

$ symfony composer req orm

This command installs a few dependencies: Doctrine DBAL (a database
abstraction layer), Doctrine ORM (a library to manipulate our database
content using PHP objects), and Doctrine Migrations.

8.1 Configuring Doctrine ORM

How does Doctrine know the database connection? Doctrine’s recipe
added a configuration file, config/packages/doctrine.yaml, that controls
its behavior. The main setting is the database DSN, a string containing
all the information about the connection: credentials, host, port, etc. By
default, Doctrine looks for a DATABASE_URL environment variable.

71

https://www.doctrine-project.org/

8.2 Understanding Symfony Environment Variable
Conventions

You can define the DATABASE_URL manually in the .env or .env.local file.
In fact, thanks to the package’s recipe, you’ll see an example DATABASE_URL
in your .env file. But because the local port to PostgreSQL exposed by
Docker can change, it is quite cumbersome. There is a better way.

Instead of hard-coding DATABASE_URL in a file, we can prefix all commands
with symfony. This will detect services ran by Docker and/or
SymfonyCloud (when the tunnel is open) and set the environment
variable automatically.

Docker Compose and SymfonyCloud work seamlessly with Symfony
thanks to these environment variables.

Check all exposed environment variables by executing symfony
var:export:

$ symfony var:export

DATABASE_URL=postgres://main:main@127.0.0.1:32781/
main?sslmode=disable&charset=utf8
...

Remember the database service name used in the Docker and
SymfonyCloud configurations? The service names are used as prefixes to
define environment variables like DATABASE_URL. If your services are named
according to the Symfony conventions, no other configuration is needed.

Databases are not the only service that benefit from the Symfony

conventions. The same goes for Mailer, for example (via the
MAILER DSN environment variable).

72

8.3 Changing the Default DATABASE_URL Value in
.env

We will still change the .env file to setup the default DATABASE_DSN to use
PostgreSQL:

--- a/.env
+++ b/.env
@@ -25,5 +25,5 @@ APP_SECRET=447c9fa8420eb53bbd4492194b87de8f

For an SQLite database, use: "sqlite:///%kernel.project_dir’%/var/data.db"

For a PostgreSQL database, use:
"postgresql://db_user:db_password@127.0.0.1:5432/
db_name?serverVersion=118charset=utf8"

IMPORTANT: You MUST configure your server version, either here or in config/
packages/doctrine.yaml
-DATABASE_URL=mysql://db_user:db_password@127.0.0.1:3306/
db_name?serverVersion=5.7
+DATABASE_URL=postgresql://127.0.0.1:5432/db?serverVersion=11&charset=utf8

###< doctrine/doctrine-bundle ###

Why does the information need to be duplicated in two different places?
Because on some Cloud platforms, at build time, the database URL might
not be known yet but Doctrine needs to know the database’s engine to
build its configuration. So, the host, username, and password do not
really matter.

8.4 (reating Entity Classes

A conference can be described with a few properties:
 The city where the conference is organized,;
e The year of the conference;
* An international flag to indicate if the conference is local or

international (SymfonyLive vs SymfonyCon).

The Maker bundle can help us generate a class (an Entity class) that
represents a conference:

73

$ symfony console make:entity Conference

This command is interactive: it will guide you through the process of
adding all the fields you need. Use the following answers (most of them
are the defaults, so you can hit the “Enter” key to use them):

* city, string, 255, no;
* year, string, 4, no;

* jsInternational, boolean, no.

Here is the full output when running the command:

created: src/Entity/Conference.php
created: src/Repository/ConferenceRepository.php

Entity generated! Now let's add some fields!
You can always add more fields later manually or by re-running this command.

New property name (press <return> to stop adding fields):
> city

Field type (enter ? to see all types) [string]:
>

Field length [255]:
>

Can this field be null in the database (nullable) (yes/no) [no]:
>

updated: src/Entity/Conference.php
Add another property? Enter the property name (or press <return> to stop
adding fields):

> year

Field type (enter ? to see all types) [string]:
>

Field length [255]:
> 4

Can this field be null in the database (nullable) (yes/no) [no]:
>

74

updated: src/Entity/Conference.php

Add another property? Enter the property name (or press <return> to stop
adding fields):
> isInternational

Field type (enter ? to see all types) [boolean]:
>

Can this field be null in the database (nullable) (yes/no) [no]:
>

updated: src/Entity/Conference.php

Add another property? Enter the property name (or press <return> to stop
adding fields):
>

Success!

Next: When you're ready, create a migration with make:migration

The Conference class has been stored under the App\Entity\ namespace.

The command also generated a Doctrine repository class: App\Repository\
ConferenceRepository.

The generated code looks like the following (only a small portion of the
file is replicated here):

src/App/Entity/Conference.php
App\Entity

Doctrine\ORM\Mapping ORM

/**
* @ORM\Entity(repositoryClass="App\Repository\ConferenceRepository")
*/
Conference

/**
* @ORM\Id()
* @ORM\GeneratedValue()
* @ORM\Column(type="integer")

75

*/

$id

/**

* @ORM\Column(type="string", length=255)

*

4 $city
/..

getCity string
$this->city

setCity(string $city): self
$this->city = $city

$this

/...

Note that the class itself is a plain PHP class with no signs of Doctrine.
Annotations are used to add metadata useful for Doctrine to map the
class to its related database table.

Doctrine added an id property to store the primary key of the row in
the database table. This key (@ORM\Id()) is automatically generated (@ORM\
GeneratedValue()) via a strategy that depends on the database engine.

Now, generate an Entity class for conference comments:

$ symfony console make:entity Comment

Enter the following answers:
* author, string, 255, no;
* text, text, no;
* email, string, 255, no;

* createdAt, datetime, no.

76

8.5 Linking Entities

The two entities, Conference and Comment, should be linked together.
A Conference can have zero or more Comments, which is called a one-to-
many relationship.

Use the make:entity command again to add this relationship to the
Conference class:

$ symfony console make:entity Conference

Your entity already exists! So let's add some new fields!

New property name (press <return> to stop adding fields):
> comments

Field tvpe (enter ? to see all types) [string]:
> OneToMany

What class should this entity be related to?:
> Comment

A new property will also be added to the Comment class...

New field name inside Comment [conference]:
>

Is the Comment.conference property allowed to be null (nullable)? (yes/no)
[ves]:
> no

Do you want to activate orphanRemoval on your relationship?
A Comment is "orphaned" when it is removed from its related Conference.
e.g. $conference->removeComment ($comment)

NOTE: If a Comment may *change* from one Conference to another, answer "no".
Do you want to automatically delete orphaned App\Entity\Comment objects
(orphanRemoval)? (yes/no) [no]:

> yes

updated: src/Entity/Conference.php
updated: src/Entity/Comment.php

77

If you enter ? as an answer for the type, you will get all supported
types:

Main types

string

text

boolean

integer (or smallint, bigint)
float

*

* ¥ * ¥

Relationships / Associations

relation (a wizard will help you build the relation)
ManyToOne

OneToMany

ManyToMany

OneToOne

*

* ¥ ¥ ¥

Array/Object Types

array (or simple array)
json

object

binary

blob

*

* ¥ X ¥

Date/Time Types

datetime (or datetime immutable)
datetimetz (or datetimetz_immutable)
date (or date immutable)

time (or time_immutable)
dateinterval

*

* Kk X ¥

Other Types
* decimal
* guid
* json_array

Have a look at the full diff for the entity classes after adding the
relationship:

--- a/src/Entity/Comment.php
+++ b/src/Entity/Comment.php
@@ -36,6 +36,12 @@ class Comment

+
+

*/
private $createdAt;

/**

* @ORM\ManyToOne(targetEntity="App\Entity\Conference",

inversedBy="comments")

78

* @ORM\JoinColumn(nullable=false)
*/
private $conference;

+ + + +

public function getId(): ?int

{
return $this->id;
@@ -88,4 +94,16 @@ class Comment

return $this;

}
+
+ public function getConference(): ?Conference
+ A
+ return $this->conference;
+)
+
+ public function setConference(?Conference $conference): self
+ A
+ $this->conference = $conference;
+
+ return $this;
+)
}

--- a/src/Entity/Conference.php
+++ b/src/Entity/Conference.php
@@ -2,6 +2,8 @@

namespace App\Entity;

+use Doctrine\Common\Collections\ArrayCollection;
+use Doctrine\Common\Collections\Collection;
use Doctrine\ORM\Mapping as ORM;

/**
@@ -31,6 +33,16 @@ class Conference
*/
private $isInternational;

+ /¥
+ * @ORM\OneToMany (targetEntity="App\Entity\Comment",
mappedBy="conference", orphanRemoval=true)

+ */

+ private $comments;

+

+ public function _ construct()

+

+ $this->comments = new ArrayCollection();
+)

79

public function getId(): ?int

{
return $this->id;
@@ -71,4 483,35 @@ class Conference

return $this;

}
+
+ /**
+ * @return Collection|Comment[]
+ */
+ public function getComments(): Collection
+
+ return $this->comments;
+ 1}
+
+ public function addComment(Comment $comment): self
+
+ if (!$this->comments->contains($comment)) {
+ $this->comments[] = $comment;
+ $comment->setConference($this);
+ }
+
+ return $this;
+ 1}
+
+ public function removeComment(Comment $comment): self
+ A
+ if ($this->comments->contains($comment)) {
+ $this->comments->removeElement ($comment);
+ // set the owning side to null (unless already changed)
+ if ($comment->getConference() === $this) {
+ $comment->setConference(null);
+ }
+ }
+
+ return $this;
+)

Everything you need to manage the relationship has been generated for
you. Once generated, the code becomes yours; feel free to customize it
the way you want.

80

8.6 Adding more Properties

[just realized that we have forgotten to add one property on the
Comment entity: attendees might want to attach a photo of the
conference to illustrate their feedback.

Run make:entity once more and add a photoFilename property/column of
type string, but allow it to be null as uploading a photo is optional:

$ symfony console make:entity Comment

8.7 Migrating the Database

The project model is now fully described by the two generated classes.
Next, we need to create the database tables related to these PHP entities.

Doctrine Migrations is the perfect match for such a task. It has already
been installed as part of the orm dependency.

A migration is a class that describes the changes needed to update a
database schema from its current state to the new one defined by the
entity annotations. As the database is empty for now, the migration
should consist of two table creations.

Let’s see what Doctrine generates:
$ symfony console make:migration

Notice the generated file name in the output (a name that looks like src/
Migrations/Version20191019083640.php):

src/Migrations/Version20191019083640.php
DoctrineMigrations

Doctrine\DBAL\Schema\Schema
Doctrine\Migrations\AbstractMigration

Version20191019083640 AbstractMigration

81

public function up(Schema $schema) : void
{
// this up() migration is auto-generated, please modify it to your needs
$this->abortIf($this->connection->getDatabasePlatform()->getName() !==
'postgresql’, 'Migration can only be executed safely on \'postgresql\'.');

$this->addSql('CREATE SEQUENCE comment_id seq INCREMENT BY 1 MINVALUE 1
START 1');

$this->addSql('CREATE SEQUENCE conference id seq INCREMENT BY 1
MINVALUE 1 START 1');

$this->addSql('CREATE TABLE comment (id INT NOT NULL, conference id INT
NOT NULL, author VARCHAR(255) NOT NULL, text TEXT NOT NULL, email VARCHAR(255)
NOT NULL, created at TIMESTAMP(0) WITHOUT TIME ZONE NOT NULL, photo_filename
VARCHAR(255) DEFAULT NULL, PRIMARY KEY(id))');

$this->addSql('CREATE INDEX IDX 9474526C604B8382 ON comment
(conference id)');

$this->addSql('CREATE TABLE conference (id INT NOT NULL, city
VARCHAR(255) NOT NULL, year VARCHAR(4) NOT NULL, is_international BOOLEAN NOT
NULL, PRIMARY KEY(id))');

$this->addSql('ALTER TABLE comment ADD CONSTRAINT FK 9474526C604B8382
FOREIGN KEY (conference id) REFERENCES conference (id) NOT DEFERRABLE INITIALLY
IMMEDIATE');

¥
public function down(Schema $schema) : void
{
/...
}

8.8 Updating the Local Database

You can now run the generated migration to update the local database
schema:

$ symfony console doctrine:migrations:migrate

The local database schema is now up-to-date, ready to store some data.

8.9 Updating the Production Database

The steps needed to migrate the production database are the same as the

82

ones you are already familiar with: commit the changes and deploy.

When deploying the project, SymfonyCloud updates the code, but also
runs the database migration if any (it detects if the
doctrine:migrations:migrate command exists).

e Going Further

* Databases and Doctrine ORM in Symfony applications;
» SymfonyCasts Doctrine tutorial,
* Working with Doctrine Associations/Relations;

* DoctrineMigrationsBundle docs.

83

https://symfony.com/doc/current/doctrine.html
https://symfonycasts.com/screencast/symfony-doctrine/install
https://symfony.com/doc/current/doctrine/associations.html
https://symfony.com/doc/master/bundles/DoctrineMigrationsBundle/index.html

Step 9
Setting up an Admin Backend

Adding upcoming conferences to the database is the job of project
admins. An admin backend is a protected section of the website where
project admins can manage the website data, moderate feedback
submissions, and more.

How can we create this fast? By using a bundle that is able to generate
an admin backend based on the project’s model. EasyAdmin fits the bill
perfectly.

9.1 Configuring EasyAdmin

First, add EasyAdmin as a project dependency:

$ symfony composer req admin

To configure EasyAdmin, a new configuration file was generated via its
Flex recipe:

config/packages/easy_admin.yaml

85

#easy admin:

entities:

List the entity class name you want to manage
- App\Entity\Product

- App\Entity\Category

- App\Entity\User

Almost all installed packages have a configuration like this one under
the config/packages/ directory. Most of the time, the defaults have been
chosen carefully to work for most applications.

Uncomment the first couple of lines and add the project’s model classes:

config/packages/easy_admin.yaml

easy admin
entities
App\Entity\Conference
App\Entity\Comment

Access the generated admin backend at /admin. Boom! A nice and feature-
rich admin interface for conferences and comments:

/admin/
EasyAdmin
& Conference
Conference Search Add Conference
& Comment
D Vv City Year Is international Comments
2 Paris 2020 @) 0 Edit Delete

1 Amsterdam 2019 [@) 4 Edit Delete

2 results

86

Why is the backend accessible under /admin? That’s the default prefix
configured in config/routes/easy admin.yaml:

config/routes/easy_admin.yaml

easy_admin_bundle
resource: '@EasyAdminBundle/Controller/EasyAdminController.php’
prefix: /admin
type: annotation

You can change it to anything you like.

Adding conferences and comments is not possible yet as you would get an
error: Object of class App\Entity\Conference could not be converted to
string. EasyAdmin tries to display the conference related to comments,
but it can only do so if there is a string representation of a conference. Fix
it by adding a __toString() method on the Conference class:

--- a/src/Entity/Conference.php

+++ b/src/Entity/Conference.php

@@ -43,6 +43,11 @@ class Conference
$this->comments = new ArrayCollection();

}
+ public function _ toString(): string
+ q
+ return $this->city.' '.$this->year;
+)
+
public function getId(): ?int
{

return $this->id;

Do the same for the Comment class:

--- a/src/Entity/Comment.php

+++ b/src/Entity/Comment.php

@@ -48,6 +48,11 @@ class Comment
*/
private $photoFilename;

+ public function _ toString(): string
+

+ return (string) $this->getEmail();
+)

87

public function getId(): ?int
{

return $this->id;

You can now add/modify/delete conferences directly from the admin
backend. Play with it and add at least one conference.

/admin/?entity=Conference8action=1ist

EasyAdmin
& Conference
Conference Search Add Conference
& Comment
ID ¥ City Year Is international Comments
2 Paris 2020 @] 0 Edit Delete
1 Amsterdam 2019 @) 4 Edit Delete

2results

Add some comments without photos. Set the date manually for now; we
will fill-in the createdAt column automatically in a later step.

88

/admin/?entity=Comment&action=1ist

EasyAdmin

& Conference

& Comment

Comment

ID v Author

4 Lucas

3 Helene

2 Thomas

1 Fabien

4 results

Email

lucas@some.where

helene@some.where

thomas@some.where

fabien@some.where

9.2 Customizing EasyAdmin

Search

Created at

December 6,

2019 10:49

December 6,

2019 10:49

December 6,

2019 10:49

December 6,

2019 10:49

Photo filename

lisbon.png

lisbon.png

lisbon.png

lisbon.png

Add Comment

Conference

Amsterdam
2019

Amsterdam
2019

Amsterdam
2019

Amsterdam
2019

Edit
Delete

Edit
Delete

Edit
Delete

Edit
Delete

The default admin backend works well, but it can be customized in
many ways to improve the experience. Let’s do some simple changes to
demonstrate the possibilities. Replace the current configuration with the

following;:

config/packages/easy_admin.yaml

easy_admin:

site _name: Conference Guestbook

design:
menu:

- { route: 'homepage', label: 'Back to the website', icon: 'home' }
- { entity: 'Conference', label: 'Conferences', icon: 'map-marker' }

- { entity: 'Comment', label: 'Comments', icon: 'comments' }

entities:
Conference:

class: App\Entity\Conference

Comment:

class: App\Entity\Comment

list:
fields:

89

- author
- { property: 'email', type: 'email' }
- { property: 'createdAt', type: 'datetime’ }
sort: ['createdAt', 'ASC']
filters: |['conference']
edit:
fields:
- { property: 'conference' }
- { property: 'createdAt', type: datetime, type options: {
attr: { readonly: true } } }
- "author'
- { property: 'email', type: 'email' }
- text

We have overridden the design section to add icons to the menu items
and to add a link back to the website home page.

For the Comment section, listing the fields lets us order them the way we
want. Some fields are tweaked, like setting the creation date to read-only.
The filters section defines which filters to expose on top of the regular

search field.

/admin/?entity=Comment&action=1ist

X Clear Y Filters + Apply

@ Conference

is same

Amsterdam 2019

Amsterdam 2019

Paris 2020

200 @easyadmin 148ms 20MB [J1 [F]2 L 226 §g7 L anon.) 28ms |3 7|2 Ed sever @ 501 X

These customizations are just a small introduction of the possibilities
given by EasyAdmin.

Play with the admin, filter the comments by conference, or search

90

comments by email for instance. The only issue is that anybody can
access the backend. Don’t worry, we will secure it in a future step.

Q Going Further

* EasyAdmin docs;
» SymfonyCasts EasyAdminBundle tutorial,

* Symfony framework configuration reference.

91

https://symfony.com/doc/master/bundles/EasyAdminBundle/index.html
https://symfonycasts.com/screencast/easyadminbundle
https://symfony.com/doc/current/reference/configuration/framework.html

Step 10
Building the User Interface

Everything is now in place to create the first version of the website user
interface. We won’t make it pretty. Just functional for now.

Remember the escaping we had to do in the controller for the easter
egg to avoid security issues? We won’t use PHP for our templates for
that reason. Instead, we will use Twig. Besides handling output escaping
for us, Twig brings a lot of nice features we will leverage, like template
inheritance.

10.1 Installing Twig

We don’t need to add Twig as a dependency as it has already been
installed as a transitive dependency of EasyAdmin. But what if you decide
to switch to another admin bundle later on? One that uses an API and
a React front-end for instance. It will probably not depend on Twig
anymore, and so Twig will automatically be removed when you remove
EasyAdmin.

For good measure, let’s tell Composer that the project really depends on

93

https://twig.symfony.com/

Twig, independently of EasyAdmin. Adding it like any other dependency
is enough:

$ symfony composer req twig

Twig is now part of the main project dependencies in composer. json:

--- a/composer.json

+++ b/composer.json

@@ -14,6 +14,7 @@
"symfony/framework-bundle": "4.4.*",
"symfony/maker-bundle": "~1.0@dev",
"symfony/orm-pack": "dev-master",

+ "symfony/twig-pack": "~1.0",
"symfony/yaml": "4.4.*%"

}5

"require-dev": {

10.2 Using Twig for the Templates

All pages on the website will share the same layout. When installing Twig,
a templates/ directory has been created automatically and a sample layout
was created as well in base.html.twig.

templates/base.html.twig
<!DOCTYPE html>

<html>
<head>
<meta charset="UTF-8">
<title> title % Welcome! </title>
stylesheets
</head>
<body>
body
javascripts
</body>
</html>

A layout can define block elements, which are the places where child
templates that extend the layout add their contents.

Let’s create a template for the project’s homepage in templates/

94

conference/index.html.twig:

templates/conference/index.html.twig

'base.html.twig’
title %}Conference Guestbook

body
<h2>Give your feedback!</h2>

conference conferences
<h4>{{ conference }}</h4>

The template extends base.html.twig and redefines the title and body
blocks.

The {% %} notation in a template indicates actions and structure.

The {{ }} notation is used to display something. {{ conference }} displays
the conference representation (the result of calling toString on the
Conference object).

10.3 Using Twig in a Controller

Update the controller to render the Twig template:

--- a/src/Controller/ConferenceController.php
+++ b/src/Controller/ConferenceController.php
@@ -2,24 +2,21 @@

namespace App\Controller;

+use App\Repository\ConferenceRepository;
use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;
use Symfony\Component\HttpFoundation\Response;
use Symfony\Component\Routing\Annotation\Route;

+use Twig\Environment;

class ConferenceController extends AbstractController

{

/**

* @Route("/", name="homepage")

95

*/
- public function index()

+ public function index(Environment $twig, ConferenceRepository
$conferenceRepository)
{
- return new Response(<<<EOF
-<html>
- <body>
-
- </body>
-</html>
-EOF
-);
+ return new Response($twig->render('conference/index.html.twig"', [
+ "conferences' => $conferenceRepository->findAll(),
+ N);
}
}

There is a lot going on here.

To be able to render a template, we need the Twig Environment object (the
main Twig entry point). Notice that we ask for the Twig instance by type-
hinting it in the controller method. Symfony is smart enough to know
how to inject the right object.

We also need the conference repository to get all conferences from the
database.

In the controller code, the render() method renders the template and
passes an array of variables to the template. We are passing the list of
Conference objects as a conferences variable.

A controller is a standard PHP class. We don’t even need to extend
the AbstractController class if we want to be explicit about our
dependencies. You can remove it (but don’t do it, as we will use the nice
shortcuts it provides in future steps).

10.4 Creating the Page for a Conference

Each conference should have a dedicated page to list its comments.
Adding a new page is a matter of adding a controller, defining a route for
it, and creating the related template.

96

Add a show() method in src/Controller/ConferenceController.php:

--- a/src/Controller/ConferenceController.php
+++ b/src/Controller/ConferenceController.php

0@ -2,7 +2,9 @@
namespace App\Controller;

+use App\Entity\Conference;
+use App\Repository\CommentRepository;
use App\Repository\ConferenceRepository;
use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;
use Symfony\Component\HttpFoundation\Response;
use Symfony\Component\Routing\Annotation\Route;
@@ -19,4 +21,15 @@ class ConferenceController extends AbstractController
"conferences' => $conferenceRepository->findAll(),

D);
}

/**

* @Route("/conference/{id}", name="conference")

*/

public function show(Environment $twig, Conference $conference,
CommentRepository $commentRepository)

+ + + + +

+ q
+ return new Response($twig->render('conference/show.html.twig', [
+ "conference' => $conference,
+ "comments' => $commentRepository->findBy(['conference' =>
$conference], ['createdAt' => 'DESC']),
* N);
+ 0}
}

This method has a special behavior we have not seen yet. We ask for a
Conference instance to be injected in the method. But there may be many
of these in the database. Symfony is able to determine which one you
want based on the {id} passed in the request path (id being the primary
key of the conference table in the database).

Retrieving the comments related to the conference can be done via the
findBy() method which takes a criteria as a first argument.

The last step is to create the templates/conference/show.html.twig file:

templates/conference/show.html.twig

'base.html.twig’

97

title %}Conference Guestbook - conference

body
<h2>{{ conference Conference</h2>

comments |length > 0
comment comments
comment.photofilename
<img src="{{ asset('uploads/photos/' ~ comment.photofilename
RS

<h4>{{ comment.author }j</h4>
<small>

comment.createdAt|format_datetime('medium', 'short’
</small>

<p>{{ comment.text ;;</p>

<div>No comments have been posted yet for this conference.</div>

In this template, we are using the | notation to call Twig filters. A filter
transforms a value. comments | length returns the number of comments and
comment.createdAt |format datetime('medium', 'short') formats the date
in a human readable representation.

Try to reach the “first” conference via /conference/1, and notice the
following error:

98

/conference/1

@j Symfony Exception & Symfony Docs @ Symfony Support

SyntaxError HTTP 500 Internal Server Error

The "format_datetime" filter is part of the IntlExtension, which is not installed/enabled; try running !,,,,.l ~
"composer require twig/intl-extra" in "conference/show.html.twig". /0 01@
b Ood

Logs [Hll Stack Trace

Twig\Error\ B
SyntaxError

in vendor/twig/extra-bund| Missit i php (line 21)

(+]

in vendor/twig/twig/src; i php -> ilter (line 228)
in vendor/twig/twig/src/Environment.php -> getFilter (line 658)
in vendor/twig/twig/src/ExpressionParser.php -> getFilter (line 766)

in vendor/twig/twig/src/ExpressionParser.php -> getFilterNodeClass (line 549)

00000

in vendor/twig/twig/src/ExpressionParser.php -> parseFilterExpressionRaw (line 534)

in vendor/twig/twig/src/ExpressionParser.php -> parseFilterExpression (line 392)

(+ I+

in vendor/twig/twig/src/ExpressionParser.php -> parsePostfixExpression (line 284)

in vendor/twig/twig/src/ExpressionParser.php -> parsePrimaryExpression (line 175)

(4]

The error comes from the format_datetime filter as it is not part of Twig
core. The error message gives you a hint about which package should be
installed to fix the problem:

$ symfony composer require twig/intl-extra

Now the page works properly.

10.5 Linking Pages Together

The very last step to finish our first version of the user interface is to link
the conference pages from the homepage:

--- a/templates/conference/index.html.twig
+++ b/templates/conference/index.html.twig

@@ -7,5 +7,8 @@

{% for conference in conferences %}
<h4>{{ conference }}</h4>

+ <p>
+ View
+ </p>

{% endfor %}
{% endblock %}

99

But hard-coding a path is a bad idea for several reasons. The most
important reason is if you change the path (from /conference/{id} to
/conferences/{id} for instance), all links must be updated manually.

Instead, use the path() Twig function and use the route name:

--- a/templates/conference/index.html.twig
+++ b/templates/conference/index.html.twig
@@ ‘817 +8)7 @@
{% for conference in conferences %}
<h4>{{ conference }}</h4>
<p>
- View
+ View
</p>
{% endfor %}
{% endblock %}

The path() function generates the path to a page using its route name.
The values of the route parameters are passed as a Twig map.

10.6 Paginating the Comments

With thousands of attendees, we can expect quite a few comments. If we
display them all on a single page, it will grow very fast.

Create a getCommentPaginator() method in the Comment Repository that
returns a Comment Paginator based on a conference and an offset (where
to start):

--- a/src/Repository/CommentRepository.php
+++ b/src/Repository/CommentRepository.php
@@ -3,8 +3,10 @@

namespace App\Repository;

use App\Entity\Comment;

+use App\Entity\Conference;
use Doctrine\Bundle\DoctrineBundle\Repository\ServiceEntityRepository;
use Doctrine\Common\Persistence\ManagerRegistry;

+use Doctrine\ORM\Tools\Pagination\Paginator;

/**
* @method Comment|null find($id, $lockMode = null, $lockVersion = null)

100

@@ -14,11 +16,27 @@ use Doctrine\Common\Persistence\ManagerRegistry;
*/
class CommentRepository extends ServiceEntityRepository

{
+ public const PAGINATOR PER PAGE = 2;
+
public function _ construct(ManagerRegistry $registry)
{
parent:: construct($registry, Comment::class);
}
+ public function getCommentPaginator(Conference $conference, int $offset):
Paginator
+ q
+ $query = $this->createQueryBuilder('c")
+ ->andWhere('c.conference = :conference')
+ ->setParameter('conference', $conference)
+ ->orderBy('c.createdAt', 'DESC')
+ ->setMaxResults(self::PAGINATOR PER_PAGE)
+ ->setFirstResult($offset)
+ ->getQuery()
+ 5
+
+ return new Paginator($query);
b}
+
/1 [**
// * @return Comment[] Returns an array of Comment objects
/1 */

We have set the maximum number of comments per page to 2 to ease
testing.

To manage the pagination in the template, pass the Doctrine Paginator
instead of the Doctrine Collection to Twig:

--- a/src/Controller/ConferenceController.php
+++ b/src/Controller/ConferenceController.php
@@ -6,6 +6,7 @@ use App\Entity\Conference;
use App\Repository\CommentRepository;
use App\Repository\ConferenceRepository;
use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;
+use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpFoundation\Response;
use Symfony\Component\Routing\Annotation\Route;
use Twig\Environment;
@@ -25,11 +26,16 @@ class ConferenceController extends AbstractController

101

J**

* @Route("/conference/{id}", name="conference")

*/
- public function show(Environment $twig, Conference $conference,
CommentRepository $commentRepository)
+ public function show(Request $request, Environment $twig, Conference
$conference, CommentRepository $commentRepository)

{
+ $offset = max(0, $request->query->getInt('offset’, 0));
+ $paginator = $commentRepository->getCommentPaginator($conference,
$offset);

+
return new Response($twig->render('conference/show.html.twig', [
"conference' => $conference,
- "comments' => $commentRepository->findBy(['conference' =>
$conference], ['createdAt' => 'DESC']),

+ "comments’ => $paginator,
+ 'previous’ => $offset - CommentRepository::PAGINATOR_PER_PAGE,
+ "next' => min(count($paginator), $offset +
CommentRepository: :PAGINATOR PER_PAGE),
D);
}
}

The controller gets the offset from the Request query string ($request-
>query) as an integer (getInt()), defaulting to O if not available.

The previous and next offsets are computed based on all the information
we have from the paginator.

Finally, update the template to add links to the next and previous pages:

index 0c9e7d2..14b51fd 100644
--- a/templates/conference/show.html.twig
+++ b/templates/conference/show.html.twig
@@ ‘616 +6)8 @@

<h2>{{ conference }} Conference</h2>

{% if comments|length > 0 %}
+ <div>There are {{ comments|length }} comments.</div>

{% for comment in comments %}
{% if comment.photofilename %}
<img src="{{ asset('uploads/photos/' ~ comment.photofilename)
e
@@ -18,6 +20,13 @@

<p>{{ comment.text }}</p>

102

{% endfor %}

+
+ {% if previous >= 0 %}

+ <a href="{{ path('conference', { id: conference.id, offset:
previous }) }}">Previous

+ {% endif %}

+ {% if next < comments|length %}

+ <a href="{{ path('conference', { id: conference.id, offset: next
}) }}">Next

+ {% endif %}

{% else %}
<div>No comments have been posted yet for this conference.</div>
{% endif %}

You should now be able to navigate the comments via the “Previous” and
“Next” links:

/conference/1

Amsterdam 2019 Conference

There are 4 comments.

Lucas

Dec 6, 2019, 10:50 AM

That was an amazing conference.

Helene

Dec 6,2019, 10:50 AM
That was an amazing conference.

Next

103

/conference/1?offset=2

Amsterdam 2019 Conference

There are 4 comments.
0

Thomas

Dec 6, 2019, 10:50 AM

That was a cool conference.

Fabien

Dec 6,2019, 10:50 AM
That was a great conference.

Previous

10.7 Refactoring the Controller

You might have noticed that both methods in ConferenceController take
a Twig environment as an argument. Instead of injecting it into each
method, let’s use some constructor injection instead (that makes the list
of arguments shorter and less redundant):

--- a/src/Controller/ConferenceController.php
+++ b/src/Controller/ConferenceController.php
@@ -13,12 +13,19 @@ use Twig\Environment;

class ConferenceController extends AbstractController

{
+ private $twig;
+
+ public function _ construct(Environment $twig)
+ A
+ $this->twig = $twig;
+ }
+

/**

* @Route("/", name="homepage")

*/
- public function index(Environment $twig, ConferenceRepository
$conferenceRepository)
+ public function index(ConferenceRepository $conferenceRepository)

104

- return new Response($twig->render('conference/index.html.twig', [
+ return new Response($this->twig->render('conference/index.html.twig', [
"conferences' => $conferenceRepository->findAll(),

D);
}
@@ -26,12 +33,12 @@ class ConferenceController extends AbstractController
/**
* @Route("/conference/{id}", name="conference")
*/

- public function show(Request $request, Environment $twig, Conference
$conference, CommentRepository $commentRepository)
+ public function show(Request $request, Conference $conference,
CommentRepository $commentRepository)
{

$offset = max(0, $request->query->getInt('offset’, 0));

$paginator = $commentRepository->getCommentPaginator($conference,
$offset);

- return new Response($twig->render('conference/show.html.twig", [

+ return new Response($this->twig->render('conference/show.html.twig", [
"conference' => $conference,
"comments’ => $paginator,
'previous’ => $offset - CommentRepository::PAGINATOR PER_PAGE,

e Going Further

* Twig docs;

Creating and Using Templates in Symfony applications;

SymfonyCasts Twig tutorial,

Twig functions and filters only available in Symfony;,

The AbstractController base controller.

105

https://twig.symfony.com/doc/2.x/
https://symfony.com/doc/current/templates.html
https://symfonycasts.com/screencast/symfony/twig-recipe
https://symfony.com/doc/current/reference/twig_reference.html
https://symfony.com/doc/current/controller.html#the-base-controller-classes-services

Step 11
Branching the Code

There are many ways to organize the workflow of code changes in a
project. But working directly on the Git master branch and deploying
directly to production without testing is probably not the best one.

Testing is not just about unit or functional tests, it is also about checking
the application behavior with production data. If you or your stakeholders
can browse the application exactly as it will be deployed to end users, this
becomes a huge advantage and allows you to deploy with confidence. It is
especially powerful when non-technical people can validate new features.

We will continue doing all the work in the Git master branch in the next
steps for simplicity sake and to avoid repeating ourselves, but let’s see
how this could work better.

11.1 Adopting a Git Workflow

One possible workflow is to create one branch per new feature or bug fix.
[t is simple and efficient.

107

https://en.wikipedia.org/wiki/Project_stakeholder

11.2 Describing your Infrastructure

You might not have realized it yet, but having the infrastructure stored
in files alongside of the code helps a lot. Docker and SymfonyCloud
use configuration files to describe the project infrastructure. When a
new feature needs an additional service, the code changes and the
infrastructure changes are part of the same patch.

11.3 Creating Branches

The workflow starts with the creation of a Git branch:

$ git checkout -b sessions-in-redis

This command creates a sessions-in-redis branch from the master
branch. It “forks” the code and the infrastructure configuration.

11.4 Storing Sessions in Redis

As you might have guessed from the branch name, we want to switch
session storage from the filesystem to a Redis store.

The needed steps to make it a reality are typical:

Create a Git branch;

Update the Symfony configuration if needed;

1.

2.

3. Write and/or update some code if needed;

4. Update the PHP configuration (add the Redis PHP extension);
5

. Update the infrastructure on Docker and SymfonyCloud (add the
Redis service);

(o)

. Test locally;

7. Test remotely;

108

8. Merge the branch to master;
9. Deploy to production;
10. Delete the branch.

All changes needed for 2 to 5 can be done in one patch:

--- a/.symfony.cloud.yaml
+++ b/.symfony.cloud.yaml
@@ -4,6 +4,7 @@ type: php:7.3

runtime:
extensions:
+ - redis
- pdo_pgsql
- apcu
- mbstring

@@ -14,6 +15,7 @@ build:

relationships:
database: "db:postgresql”
+ redis: "rediscache:redis"
web:
locations:

--- a/.symfony/services.yaml
+++ b/.symfony/services.yaml
@@ -2,3 +2,6 @@ db:

type: postgresql:11

disk: 1024
size: S

+

+rediscache:

+ type: redis:5.0
--- a/config/packages/framework.yaml
+++ b/config/packages/framework.yaml
@@ -6,7 +6,7 @@ framework:
Enables session support. Note that the session will ONLY be started if
you read or write from it.
Remove or comment this section to explicitly disable session support.

session:
- handler id: null
+ handler id: '%env(REDIS URL)%'

cookie secure: auto
cookie samesite: lax

--- a/docker-compose.yaml
+++ b/docker-compose.yaml

109

@@ -8,3 +8,7 @@ services:
POSTGRES_PASSWORD: main
POSTGRES_DB: main
ports: [5432]

redis:
image: redis:5-alpine
ports: [6379]

+ + + +

[sn’t it beautiful?

“Reboot” Docker to start the Redis service:

$ docker-compose stop
$ docker-compose up -d

I’ll let you test locally by browsing the website. As there are no visual
changes and because we are not using sessions yet, everything should still
work as before.

11.5 Deploying a Branch

Before deploying to production, we should test the branch on the same
infrastructure as the production one. We should also validate that
everything works fine for the Symfony prod environment (the local
website used the Symfony dev environment).

First, make sure to commit your changes to the new branch:

$ git add .
$ git commit -m'Configure redis sessions'

Now, let’s create a SymfonyCloud environment based on the Git branch:

$ symfony env:create

This command creates a new environment as follows:

e The branch inherits the code and infrastructure from the current Git
branch (sessions-in-redis);

110

* The data come from the master (aka production) environment by
taking a consistent snapshot of all service data, including files (user
uploaded files for instance) and databases;

* A new dedicated cluster is created to deploy the code, the data, and
the infrastructure.

As the deployment follows the same steps as deploying to production,
database migrations will also be executed. This is a great way to validate
that the migrations work with production data.

The non-master environments are very similar to the master one except for
some small differences: for instance, emails are not sent by default.

Once the deployment is finished, open the new branch in a browser:

$ symfony open:remote

Note that all SymfonyCloud commands work on the current Git branch.
This command opens the deployed URL for the sessions-in-redis
branch; the URL will look like https://sessions-in-redis-
XXX.eu.s5y.io/.

Test the website on this new environment, you should see all the data that
you created in the master environment.

If you add more conferences on the master environment, they won’t
show up in the sessions-in-redis environment and vice-versa. The
environments are independent and isolated.

If the code evolves on master, you can always rebase the Git branch and
deploy the updated version, resolving the conflicts for both the code and
the infrastructure.

You can even synchronize the data from master back to the sessions-in-
redis environment:

$ symfony env:sync

11.6 Debugging Production Deployments before

111

Deploying

By default, all SymfonyCloud environments use the same settings as
the master/prod environment (aka the Symfony prod environment). This
allows you to test the application in real-life conditions. It gives you
the feeling of developing and testing directly on production servers, but
without the risks associated with it. This reminds me of the good old days
when we were deploying via FTP.

In case of a problem, you might want to switch to the dev Symfony
environment:

$ symfony env:debug

When done, move back to production settings:

$ symfony env:debug --off

Never enable the dev environment and never enable the Symfony
Profiler on the master branch; it would make your application really
slow and open a lot of serious security vulnerabilities.

11.7 Testing Production Deployments before
Deploying

Having access to the upcoming version of the website with production
data opens up a lot of opportunities: from visual regression testing to
performance testing. Blackfire is the perfect tool for the job.

Refer to the step about “Performance” to learn more about how you can
use Blackfire to test your code before deploying.

11.8 Merging to Production

When you are satisfied with the branch changes, merge the code and the

112

https://blackfire.io/

infrastructure back to the Git master branch:

$ git checkout master
$ git merge sessions-in-redis

And deploy:

$ symfony deploy

When deploying, only the code and infrastructure changes are pushed to
SymfonyCloud; the data are not affected in any way.

11.9 Cleaning up

Finally, clean up by removing the Git branch and the SymfonyCloud
environment:

$ git branch -d sessions-in-redis
$ symfony env:delete --env=sessions-in-redis --no-interaction

0 Going Further

* Git branching;
* Redis docs.

113

https://www.git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell
https://redis.io/documentation

Step 12
Listening to Events

The current layout is missing a navigation header to go back to the
homepage or switch from one conference to the next.

12.1 Adding a Website Header

Anything that should be displayed on all web pages, like a header, should
be part of the main base layout:

--- a/templates/base.html.twig
+++ b/templates/base.html.twig
@@ -6,6 +6,15 @@
{% block stylesheets %}{% endblock %}
</head>
<body>
<header>
<h1l>Guestbook</h1>

{% for conference in conferences %}
<a href="{{ path('conference', { id: conference.id })
}'>{{ conference }}</1i>
{% endfor %}

+ 4+ + + + +

115

+
<hr />
+ </header>
{% block body %}{% endblock %}
{% block javascripts %}{% endblock %}
</body>

-+

Adding this code to the layout means that all templates extending it must
define a conferences variable, which must be created and passed from
their controllers.

As we only have two controllers, you might do the following;:

--- a/src/Controller/ConferenceController.php
+++ b/src/Controller/ConferenceController.php

@@ -32,9 +32,10 @@ class ConferenceController extends AbstractController
/**

* @Route("/conference/{slug}", name="conference")

*/
- public function show(Conference $conference, CommentRepository
$commentRepository)
+ public function show(Conference $conference, CommentRepository
$commentRepository, ConferenceRepository $conferenceRepository)

{
return new Response($this->twig->render('conference/show.html.twig', [
+ "conferences' => $conferenceRepository->findAll(),
'conference' => $conference,
"comments’ => $commentRepository->findBy(['conference' =>
$conference], ['createdAt' => 'DESC']),

D);

Imagine having to update dozens of controllers. And doing the same on
all new ones. This is not very practical. There must be a better way.

Twig has the notion of global variables. A global variable is available in
all rendered templates. You can define them in a configuration file, but
it only works for static values. To add all conferences as a Twig global
variable, we are going to create a listener.

12.2 Discovering Symfony Events

Symfony comes built-in with an Event Dispatcher Component. A
dispatcher dispatches certain events at specific times that listeners can

116

listen to. Listeners are hooks into the framework internals.

For instance, some events allow you to interact with the lifecycle of HTTP
requests. During the handling of a request, the dispatcher dispatches
events when a request has been created, when a controller is about to be
executed, when a response is ready to be sent, or when an exception has
been thrown. A listener can listen to one or more events and execute some
logic based on the event context.

Events are well-defined extension points that make the framework more
generic and extensible. Many Symfony Components like Security,
Messenger, Workflow, or Mailer use them extensively.

Another built-in example of events and listeners in action is the lifecycle
of a command: you can create a listener to execute code before any
command is run.

Any package or bundle can also dispatch their own events to make their
code extensible.

To avoid having a configuration file that describes which events a listener
wants to listen to, create a subscriber. A subscriber is a listener with a
static getSubscribedEvents() method that returns its configuration. This
allows subscribers to be registered in the Symfony dispatcher
automatically.

12.3 Implementing a Subscriber

You know the song by heart now, use the maker bundle to generate a
subscriber:

$ symfony console make:subscriber TwigEventSubscriber

The command asks you about which event you want to listen to. Choose
the Symfony\Component\HttpKernel\Event\ControllerEvent event, which is
dispatched just before the controller is called. It is the best time to inject
the conferences global variable so that Twig will have access to it when
the controller will render the template. Update your subscriber as follows:

117

--- a/src/EventSubscriber/TwigEventSubscriber.php
+++ b/src/EventSubscriber/TwigEventSubscriber.php
@@ -2,14 +2,25 @@

namespace App\EventSubscriber;

+use App\Repository\ConferenceRepository;
use Symfony\Component\EventDispatcher\EventSubscriberInterface;
use Symfony\Component\HttpKernel\Event\ControllerEvent;

+use Twig\Environment;

class TwigEventSubscriber implements EventSubscriberInterface

{
private $twig;
private $conferenceRepository;

+
+

+

+ public function _ construct(Environment $twig, ConferenceRepository
$conferenceRepository)
+

+

+

+

+

{
$this->twig = $twig;
$this->conferenceRepository = $conferenceRepository;

}

public function onControllerEvent(ControllerEvent $event)

{

- /1 ...
+ $this->twig->addGlobal(' conferences', $this->conferenceRepository-
>findAll());

public static function getSubscribedEvents()

Now, you can add as many controllers as you want: the conferences
variable will always be available in Twig.

We will talk about a much better alternative performance-wise in a
later step.

12.4 Sorting Conferences by Year and City

Ordering the conference list by year may facilitate browsing. We could
create a custom method to retrieve and sort all conferences, but instead,
we are going to override the default implementation of the findAl1()

118

method to be sure that sorting applies everywhere:

--- a/src/Repository/ConferenceRepository.php
+++ b/src/Repository/ConferenceRepository.php
@@ -19,6 +19,11 @@ class ConferenceRepository extends ServiceEntityRepository
parent:: construct($registry, Conference::class);
}

public function findAll()
{

}

/1 7**
// * @return Conference[] Returns an array of Conference objects

/1 */

return $this->findBy([], ['year' => 'ASC', 'city' => 'ASC']);

+ + + + +

At the end of this step, the website should look like the following;:

/

Guestbook

* Amsterdam 2019
« Paris 2020

Give your feedback!
Amsterdam 2019

View

Paris 2020

View

e Going Further

* The Request-Response Flow in Symfony applications;
* The built-in Symfony HTTP events;
* The built-in Symfony Console events.

119

https://symfony.com/doc/current/components/http_kernel.html#the-workflow-of-a-request
https://symfony.com/doc/current/reference/events.html
https://symfony.com/doc/current/components/console/events.html

Step 13
Managing the Lifecycle of
Doctrine Objects

When creating a new comment, it would be great if the createdAt date
would be set automatically to the current date and time.

Doctrine has different ways to manipulate objects and their properties
during their lifecycle (before the row in the database is created, after the
row is updated, ...).

13.1 Defining Lifecycle Callbacks

When the behavior does not need any service and should be applied to
only one kind of entity, define a callback in the entity class:

-- a/src/Entity/Comment.php
+++ b/src/Entity/Comment.php
@@ -6,6 +6,7 @@ use Doctrine\ORM\Mapping as ORM;

121

/**

* @ORM\Entity(repositoryClass="App\Repository\CommentRepository")
+ * @ORM\HasLifecycleCallbacks()

*/

class Comment

{
@@ -100,6 +101,14 @@ class Comment

return $this;

}
+ /**
+ * @ORM\PrePersist
+ */
+ public function setCreatedAtValue()
+ A
+ $this->createdAt = new \DateTime();
+)
+

public function getConference(): ?Conference

{

return $this->conference;

The @ORM\PrePersist event is triggered when the object is stored in the
database for the wvery first time. When that happens, the
setCreatedAtValue() method is called and the current date and time is
used for the value of the createdAt property.

13.2 Adding Slugs to Conferences

The URLs for conferences are not meaningful: /conference/1. More
importantly, they depend on an implementation detail (the primary key
in the database is leaked).

What about using URLs like /conference/paris-2020 instead? That would
look much better. paris-2020 is what we call the conference slug.

Add a new slug property for conferences (a not nullable string of 255
characters):

$ symfony console make:entity Conference

Create a migration file to add the new column:

122

$ symfony console make:migration

And execute that new migration:

$ symfony console doctrine:migrations:migrate

Got an error? This is expected. Why? Because we asked for the slug to
be not null but existing entries in the conference database will get a null
value when the migration is ran. Let’s fix that by tweaking the migration:

--- a/src/Migrations/Version00000000000000. php
+++ b/src/Migrations/Version00000000000000.php
@@ -22,7 +22,9 @@ final class Version00000000000000 extends AbstractMigration
// this up() migration is auto-generated, please modify it to your
needs
$this->abortIf($this->connection->getDatabasePlatform()->getName() !==
'postgresql’, 'Migration can only be executed safely on \'postgresql\'.');

- $this->addSql('ALTER TABLE conference ADD slug VARCHAR(255) NOT NULL");

+ $this->addSql('ALTER TABLE conference ADD slug VARCHAR(255)');

+ $this->addSql("UPDATE conference SET slug=CONCAT(LOWER(city), '-',

year)");

+ $this->addSql('ALTER TABLE conference ALTER COLUMN slug SET NOT NULL');
}

public function down(Schema $schema) : void

The trick here is to add the column and allow it to be null, then set the
slug to a not null value, and finally, change the slug column to not allow
null.

For a real project, using CONCAT (LOWER(city), '-', year) might not be
enough. In that case, we would need to use the “real” Slugger.

Migration should run fine now:

$ symfony console doctrine:migrations:migrate

Because the application will soon use slugs to find each conference, let’s
tweak the Conference entity to ensure that slug values are unique in the
database:

123

--- a/src/Entity/Conference.php
+++ b/src/Entity/Conference.php
@@ -5,9 +5,11 @@ namespace App\Entity;
use Doctrine\Common\Collections\ArrayCollection;
use Doctrine\Common\Collections\Collection;
use Doctrine\ORM\Mapping as ORM;
+use Symfony\Bridge\Doctrine\Validator\Constraints\UniqueEntity;

/**
* @ORM\Entity(repositoryClass="App\Repository\ConferenceRepository")
+ * @UniqueEntity("slug")
*/
class Conference

{
@@ -39,7 +41,7 @@ class Conference

private $comments;

/**
- * @ORM\Column(type="string", length=255)
+ * @ORM\Column(type="string", length=255, unique=true)
*/
private $slug;

As you might have guessed, we need to perform the migration dance:

$ symfony console make:migration

$ symfony console doctrine:migrations:migrate

13.3 Generating Slugs

Generating a slug that reads well in a URL (where anything besides
ASCII characters should be encoded) is a challenging task, especially for

languages other than English. How do you convert é to e for instance?

Instead of reinventing the wheel, let’s use the Symfony String
component, which eases the manipulation of strings and provides a

slugger:

$ symfony composer req string

124

Add a computeSlug() method to the Conference class that computes the
slug based on the conference data:

--- a/src/Entity/Conference.php
+++ b/src/Entity/Conference.php
@@ -6,6 +6,7 @@ use Doctrine\Common\Collections\ArrayCollection;
use Doctrine\Common\Collections\Collection;
use Doctrine\ORM\Mapping as ORM;
use Symfony\Bridge\Doctrine\Validator\Constraints\UniqueEntity;
+use Symfony\Component\String\Slugger\SluggerInterface;

Vo

* @ORM\Entity(repositoryClass="App\Repository\ConferenceRepository")
@@ -60,6 +61,13 @@ class Conference
return $this->id;

}
+ public function computeSlug(SluggerInterface $slugger)
+ A
+ if (!$this->slug || '-' === $this->slug) {
+ $this->slug = (string) $slugger->slug((string) $this)->lower();
+ }
+)
+

public function getCity(): ?string
{

return $this->city;

The computeSlug() method only computes a slug when the current slug is
empty or set to the special - value. Why do we need the - special value?
Because when adding a conference in the backend, the slug is required.
So, we need a non-empty value that tells the application that we want the
slug to be automatically generated.

13.4 Defining a Complex Lifecycle Callback

As for the createdAt property, the slug one should be set automatically
whenever the conference is updated by calling the computeSlug() method.

But as this method depends on a SluggerInterface implementation, we
cannot add a prePersist event as before (we don’t have a way to inject the
slugger).

Instead, create a Doctrine entity listener:

125

src/EntityListener/ConferenceEntityListener.php
App\EntitylListener

App\Entity\Conference
Doctrine\ORM\Event\LifecycleEventArgs
Symfony\Component\String\Slugger\SluggerInterface
ConferenceEntitylistener
$slugger
__construct(SluggerInterface $slugger
$this->slugger = $slugger
prePersist(Conference $conference, LifecycleEventArgs

$event

$conference->computeSlug($this->slugger

preUpdate(Conference $conference, LifecycleEventArgs $event

$conference->computeSlug($this->slugger

Note that the slug is updated when a new conference is created
(prePersist()) and whenever it is updated (preUpdate()).

13.5 Configuring a Service in the Container

Up until now, we have not talked about one key component of Symfony,
the dependency injection container. The container is responsible for
managing services: creating them and injecting them whenever needed.

A service is a “global” object that provides features (e.g. a mailer, a logger,
a slugger, etc.) unlike data objects (e.g. Doctrine entity instances).

You rarely interact with the container directly as it automatically injects
service objects whenever you need them: the container injects the
controller argument objects when you type-hint them for instance.

If you wondered how the event listener was registered in the previous

126

step, you now have the answer: the container. When a class implements
some specific interfaces, the container knows that the class needs to be
registered in a certain way.

Unfortunately, automation is not provided for everything, especially for
third-party packages. The entity listener that we just wrote is one such
example; it cannot be managed by the Symfony service container
automatically as it does not implement any interface and it does not
extend a “well-know class”.

We need to partially declare the listener in the container. The dependency
wiring can be omitted as it can still be guessed by the container, but we
need to manually add some tags to register the listener with the Doctrine
event dispatcher:

--- a/config/services.yaml
+++ b/config/services.yaml
@@ -25,3 +25,7 @@ services:

add more service definitions when explicit configuration is needed
please note that last definitions always *replace* previous ones
+ App\EntitylListener\ConferenceEntitylListener:

+ tags:

+ - { name: 'doctrine.orm.entity listener', event: 'prePersist’,
entity: 'App\Entity\Conference'}

+ - { name: 'doctrine.orm.entity listener', event: 'preUpdate’,

entity: 'App\Entity\Conference'}

Don’t confuse Doctrine event listeners and Symfony ones. Even if they
look very similar, they are not using the same infrastructure under the

hood.

13.6 Using Slugs in the Application

Try adding more conferences in the backend and change the city or the
year of an existing one; the slug won’t be updated except if you use the
special - value.

The last change is to update the controllers and the templates to use the
conference slug instead of the conference id for routes:

127

--- a/src/Controller/ConferenceController.php
+++ b/src/Controller/ConferenceController.php
@@ -31,7 +31,7 @@ class ConferenceController extends AbstractController

}

J**
- * @Route("/conference/{id}", name="conference")
+ * @Route("/conference/{slug}", name="conference")
*/

public function show(Request $request, Conference $conference,
CommentRepository $commentRepository)
{
--- a/templates/base.html.twig
+++ b/templates/base.html.twig
@@ -10,7 +10,7 @@
<hl>Guestbook</h1>

{% for conference in conferences %}
- <a href="{{ path('conference', { id: conference.id })
}}">{{ conference }}</1i>
+ <a href="{{ path('conference', { slug: conference.slug })
}}">{{ conference }}</1i>
{% endfor %}

<hr />
--- a/templates/conference/show.html.twig
+++ b/templates/conference/show.html.twig
@@ -22,10 +22,10 @@
{% endfor %}

{% if previous >= 0 %}
- <a href="{{ path('conference', { id: conference.id, offset:
previous }) }}">Previous
+ <a href="{{ path('conference', { slug: conference.slug, offset:
previous }) }}">Previous
{% endif %}
{% if next < comments|length %}
- <a href="{{ path('conference', { id: conference.id, offset: next
}) }}">Next
+ <a href="{{ path('conference', { slug: conference.slug, offset:
next }) }}">Next
{% endif %}
{% else %}
<div>No comments have been posted yet for this conference.</div>
--- a/templates/conference/index.html.twig
+++ b/templates/conference/index.html.twig
@@ -8,7 +8,7 @@
{% for conference in conferences %}
<h4>{{ conference }}</h4>

128

<p>
- View
+ <a href="{{ path('conference', { slug: conference.slug })
" >View
</p>
{% endfor %}
{% endblock %}

Accessing conference pages should now be done via its slug:

/conference/amsterdam-2019

Guestbook

* Amsterdam 2019
« Paris 2020

Amsterdam 2019 Conference

There are 4 comments.
.

Lucas

Dec 6,2019, 10:52 AM

That was an amazing conference.

Q Going Further

* The Doctrine event system (lifecycle callbacks and listeners, entity
listeners and lifecycle subscribers);

* The String component docs;
e The Service container;

* The Symfony Services Cheat Sheet.

129

https://symfony.com/doc/current/doctrine/events.html
https://symfony.com/doc/master/components/string.html
https://symfony.com/doc/current/service_container.html
https://github.com/andreia/symfony-cheat-sheets/blob/master/Symfony4/services_en_42.pdf

Step 14
Accepting Feedback with Forms

Time to let our attendees give feedback on conferences. They will
contribute their comments through an HTML form.

14.1 Generating a Form Type

Use the Maker bundle to generate a form class:

$ symfony console make:form CommentFormType Comment

created: src/Form/CommentFormType.php
Success!

Next: Add fields to your form and start using it.
Find the documentation at https://symfony.com/doc/current/forms.html

The App\Form\CommentFormType class defines a form for the App\Entity\
Comment entity:

131

src/App/Form/CommentFormType.php
App\Form

App\Entity\Comment
Symfony\Component\Form\AbstractType
Symfony\Component\Form\FormBuilderInterface
Symfony\Component\OptionsResolver\OptionsResolver

CommentFormType AbstractType
buildForm(FormBuilderInterface $builder $options
$builder
add('author’
add('text'
add('email’

add('createdAt’
add('photoFilename’
add('conference'

configureOptions(OptionsResolver $resolver

$resolver->setDefaults
"data_class' Comment: :class

A form type describes the form fields bound to a model. It does the data
conversion between submitted data and the model class properties. By
default, Symfony uses metadata from the Comment entity - such as the
Doctrine metadata - to guess configuration about each field. For example,
the text field renders as a textarea because it uses a larger column in the
database.

14.2 Displaying a Form

To display the form to the user, create the form in the controller and pass
it to the template:

--- a/src/Controller/ConferenceController.php

132

https://symfony.com/doc/current/forms.html#form-types

+++ b/src/Controller/ConferenceController.php

@@ -2,7 +2,9 @@
namespace App\Controller;

+use App\Entity\Comment;
use App\Entity\Conference;
+use App\Form\CommentFormType;
use App\Repository\CommentRepository;
use App\Repository\ConferenceRepository;
use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;
@@ -35,6 +37,9 @@ class ConferenceController extends AbstractController
*/
public function show(Request $request, Conference $conference,
CommentRepository $commentRepository)
{
+ $comment = new Comment():
+ $form = $this->createForm(CommentFormType::class, $comment);
+
$offset = max(0, $request->query->getInt('offset’, 0));
$paginator = $commentRepository->getCommentPaginator($conference,
$offset);

@@ -43.6 +48.7 @@ class ConferenceController extends AbstractController
'comments' => $paginator,
"previous’ => $offset - CommentRepository::PAGINATOR_PER_PAGE,
'next' => min(count($paginator), $offset +

CommentRepository: :PAGINATOR PER _PAGE),

+ "comment_form' => $form->createView(),

D);

You should never instantiate the form type directly. Instead, use the
createForm() method. This method is part of AbstractController and

eases the creation of forms.

When passing a form to a template, use createView() to convert the data

to a format suitable for templates.

Displaying the form in the template can be done via the form Twig

function:

--- a/templates/conference/show.html.twig
+++ b/templates/conference/show.html.twig
0@ -21,4 +21,8 @@

{% else %}

133

<div>No comments have been posted yet for this conference.</div>
{% endif %}

<h2>Add your own feedback</h2>

+ + + +

{{ form(comment form) }}
{% endblock %}

When refreshing a conference page in the browser, note that each form
field shows the right HTML widget (the data type is derived from the
model):

/conference/amsterdam-2019

Dec 6, 2019, 10:53 AM

That was an amazing conference.

Helene

Dec 6, 2019, 10:53 AM
That was an amazing conference.

Next

Add your own feedback
Author

Text Z
Email

Created at

[Jan v[1 v[2014 ¥

00 v|{00v|

Photo filename

Conference Amsterdam 2019 ¥

The form() function generates the HTML form based on all the
information defined in the Form type. It also adds enctype=multipart/
form-data on the <form> tag as required by the file upload input field.
Moreover, it takes care of displaying error messages when the submission
has some errors. Everything can be customized by overriding the default
templates, but we won’t need it for this project.

14.3 Customizing a Form Type

Even if form fields are configured based on their model counterpart, you

134

can customize the default configuration in the form type class directly:

--- a/src/Form/CommentFormType.php
+++ b/src/Form/CommentFormType.php
@@ -4,20 +4,31 @@ namespace App\Form;

use App\Entity\Comment;

use Symfony\Component\Form\AbstractType;
+use Symfony\Component\Form\Extension\Core\Type\EmailType;
+use Symfony\Component\Form\Extension\Core\Type\FileType;
+use Symfony\Component\Form\Extension\Core\Type\SubmitType;

use Symfony\Component\Form\FormBuilderInterface;

use Symfony\Component\OptionsResolver\OptionsResolver;
+use Symfony\Component\Validator\Constraints\Image;

class CommentFormType extends AbstractType

{

public function buildForm(FormBuilderInterface $builder, array $options)

{
$builder
- ->add("author")
+ ->add('author', null, [
+ 'label' => 'Your name',
+ D
->add("text")
- ->add('email")
- ->add('createdAt")
- ->add('photoFilename")
->add('conference')
->add('email’, EmailType::class)
->add('photo’, FileType::class, [
'required’ => false,
'mapped' => false,
"constraints' => [
new Image(['maxSize' => '1024k'])
1,

D)
->add("submit', SubmitType::class)

+ + + + + + + + 4+

Note that we have added a submit button (that allows us to keep using
the simple {{ form(comment form) }} expression in the template).

Some fields cannot be auto-configured, like the photoFilename one. The
Comment entity only needs to save the photo filename, but the form has
to deal with the file upload itself. To handle this case, we have added a
field called photo as un-mapped field: it won’t be mapped to any property

135

on Comment. We will manage it manually to implement some specific logic
(like storing the uploaded photo on the disk).

As an example of customization, we have also modified the default label
for some fields.

/conference/amsterdam-2019

I
Lucas

Dec 6, 2019, 10:53 AM

That was an amazing conference.

Helene

Dec 6, 2019, 10:53 AM
That was an amazing conference.

Next

Add your own feedback
Your name

Text 4
Email
Photo Choose File | No file chosen

| Submit

14.4 Validating Models

The Form Type configures the frontend rendering of the form (via some
HTMLS validation). Here is the generated HTML form:

form name="comment form" method="post" enctype="multipart/form-data"
div id="comment_form"
div
label for="comment form author" class="required">Your name</label
input type="text" id="comment_ form author"
name="comment form[author]" required-"required" maxlength="255"
div
div
label for="comment form text" class="required">Text</label
textarea id="comment_ form text" name="comment form[text]"
required="required"></textarea
div
div
label for="comment form email" class="required">Email</label

136

<input type="email" id="comment form email"
name="comment form[email]" required="required" />
</div>
<div >
<label for="comment form photo">Photo</label>
<input type="file" id="comment form photo"
name="comment_form[photo]" />
</div>
<div >
<button type="submit" id="comment form submit"
name="comment form[submit]">Submit</button>
</div>
<input type="hidden" id="comment_form__token"
name="comment_form[token]" value="DwgsEanxc48jofxsqbGBVLQBqlV] Tg4u9-BL1Hjgac"
/>
</div>
</form>

The form uses the email input for the comment email and makes most of
the fields required. Note that the form also contains a _token hidden field
to protect the form from CSRF attacks.

But if the form submission bypasses the HTML validation (by using an
HTTP client that does not enforce these validation rules like cURL),
invalid data can hit the server.

We also need to add some validation constraints on the Comment data
model:

--- a/src/Entity/Comment.php
+++ b/src/Entity/Comment.php
@@ ‘316 +3)7 @@

namespace App\Entity;

use Doctrine\ORM\Mapping as ORM;
+use Symfony\Component\Validator\Constraints as Assert;

/**

* @ORM\Entity(repositoryClass="App\Repository\CommentRepository")
@@ -19,16 +20,20 @@ class Comment

/**

* @ORM\Column(type="string", length=255)
+ * @Assert\NotBlank

*/

private $author;

137

https://owasp.org/www-community/attacks/csrf

Vo

* @ORM\Column(type="text")
+ * @Assert\NotBlank

*/

private $text;

/**
* @ORM\Column(type="string", length=255)
+ * @Assert\NotBlank
+ * @Assert\Email
*/
private $email;

14.5 Handling a Form

The code we have written so far is enough to display the form.

We should now handle the form submission and the persistence of its
information to the database in the controller:

--- a/src/Controller/ConferenceController.php
+++ b/src/Controller/ConferenceController.php
@@ -7,6 +7,7 @@ use App\Entity\Conference;
use App\Form\CommentFormType;
use App\Repository\CommentRepository;
use App\Repository\ConferenceRepository;
+use Doctrine\ORM\EntityManagerInterface;
use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;
use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpFoundation\Response;
@@ -16,10 +17,12 @@ use Twig\Environment;
class ConferenceController extends AbstractController
{
private $twig;
+ private $entityManager;

- public function _ construct(Environment $twig)
+ public function _ construct(Environment $twig, EntityManagerInterface

$entityManager)

$this->twig = $twig;
+ $this->entityManager = $entityManager;

138

/**
@@ -39,6 +42,15 @@ class ConferenceController extends AbstractController
{

$comment = new Comment();
$form = $this->createForm(CommentFormType::class, $comment);

+ $form->handleRequest($request);

+ if ($form->isSubmitted() && $form->isvalid()) {

+ $comment->setConference($conference);

+

+ $this->entityManager->persist($comment);

+ $this->entityManager->flush();

+

+ return $this->redirectToRoute('conference', ['slug' => $conference-
>getSlug()]);

+ }

$offset = max(0, $request->query->getInt('offset’, 0));
$paginator = $commentRepository->getCommentPaginator($conference,
$offset);

When the form is submitted, the Comment object is updated according to
the submitted data.

The conference is forced to be the same as the one from the URL (we
removed it from the form).

If the form is not valid, we display the page, but the form will now contain
submitted values and error messages so that they can be displayed back
to the user.

Try the form. It should work well and the data should be stored in the
database (check it in the admin backend). There is one problem though:
photos. They do not work as we have not handled them yet in the
controller.

14.6 Uploading Files

Uploaded photos should be stored on the local disk, somewhere
accessible by the frontend so that we can display them on the conference
page. We will store them under the public/uploads/photos directory:

139

--- a/src/Controller/ConferenceController.php
+++ b/src/Controller/ConferenceController.php
@@ -10,6 +10,7 @@ use App\Repository\ConferenceRepository;
use Doctrine\ORM\EntityManagerInterface;
use Doctrine\ORM\Tools\Pagination\Paginator;
use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;
+use Symfony\Component\HttpFoundation\File\Exception\FileException;
use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpFoundation\Response;
use Symfony\Component\Routing\Annotation\Route;
@@ -37,7 +38,7 @@ class ConferenceController extends AbstractController
/**
* @Route("/conference/{slug}", name="conference")
*/
- public function show(Request $request, Conference $conference,
CommentRepository $commentRepository)

+ public function show(Request $request, Conference $conference,
CommentRepository $commentRepository, string $photoDir)
{

$comment = new Comment();
$form = $this->createForm(CommentFormType::class, $comment);
@@ -45,6 +46,15 @@ class ConferenceController extends AbstractController
$form->handleRequest($request);
if ($form->isSubmitted() && $form->isValid()) {
$comment->setConference($conference);

+ if ($photo = $form['photo']->getData()) {

+ $filename = bin2hex(random bytes(6)).'.".$photo-
>guessExtension();

+ try {

+ $photo->move($photoDir, $filename);

+ } catch (FileException $e) {

+ // unable to upload the photo, give up

+ }

+ $comment->setPhotoFilename($filename);

+ }

$this->entityManager->persist($comment);
$this->entityManager->flush();

To manage photo uploads, we create a random name for the file. Then,
we move the uploaded file to its final location (the photo directory).
Finally, we store the filename in the Comment object.

Notice the new argument on the show() method? $photoDir is a string and
not a service. How can Symfony know what to inject here? The Symfony
Container is able to store parameters in addition to services. Parameters
are scalars that help configure services. These parameters can be injected

140

into services explicitly, or they can be bound by name:

--- a/config/services.yaml
+++ b/config/services.yaml
@@ -10,6 +10,8 @@ services:
_defaults:

autowire: true # Automatically injects dependencies in your
services.

autoconfigure: true # Automatically registers your services as
commands, event subscribers, etc.
+ bind:
+ $photoDir: "%kernel.project dir%/public/uploads/photos”

makes classes in src/ available to be used as services
this creates a service per class whose id is the fully-qualified class
hame

The bind setting allows Symfony to inject the value whenever a service has
a $photoDir argument.

Try to upload a PDF file instead of a photo. You should see the error
messages in action. The design is quite ugly at the moment, but don’t
worry, everything will turn beautiful in a few steps when we will work
on the design of the website. For the forms, we will change one line of
configuration to style all form elements.

14.7 Debugging Forms

When a form is submitted and something does not work quite well, use
the “Form” panel of the Symfony Profiler. It gives you information about
the form, all its options, the submitted data and how they are converted
internally. If the form contains any errors, they will be listed as well.

The typical form workflow goes like this:
* The form is displayed on a page;
* The user submits the form via a POST request;
* The server redirects the user to another page or the same page.

But how can you access the profiler for a successful submit request?
Because the page is immediately redirected, we never see the web debug

141

toolbar for the POST request. No problem: on the redirected page, hover
over the left “200” green part. You should see the “302” redirection with
a link to the profile (in parenthesis).

/conference/amsterdam-2019

Guestbook

* Amsterdam 2019

* Paris 2020
Amsterdam 2019 Conference
There are 5 comments.
Fabien

Dec 6, 2019, 11:53 AM

Some comment

[
HTTP status 200 OK
Controller ~ ConferenceController :: show
Route name conference

Has session yes

302 Redirect from POST @conference (80bbce)

200 0@:confere 23ms 2.0MB E] 1 g 80 E‘a 5 ‘ anon. Server @ 501 X

Click on it to access the POST request profile, and go to the “Form”
panel:

142

/_profiler/450aa5

@ smiony Profir

https://127.0.0.1:8000/conference/amsterdam-2019 11 Return to referer URL

Method: POST HTTP Status: 302 IP: 127.0.0.1 Profiled on: Fri, 06 Dec 2019 11:53:51 +0100 Token: 7e9c4a

Last10 Latest O Search FO rms

Oo Request / Response cemmentaton Comment_form
author
Performance - App\Form\CommentFormType
Validator email Default Data &
photo
Forms ’ Property Value
submit
Model Format same as normalized format
Normalized Format pp\Entit mment {#687 P}
Logs
View Format same as normalized format
Events
Routing Submitted Data &
iz Property Value
View Format same as normalized format
Security Normalized Format PP \ET nt {#687 p}
Model Format same as normalized format

Doctri
octrine Passed Options &

Option Passed Value Resolved
Value

data Comment same as

S
o [
-
A=
Vo

Configuration

passed value

Resolved Options £

14.8 Displaying Uploaded Photos in the Admin
Backend

The admin backend is currently displaying the photo filename, but we

want to see the actual photo:

--- a/config/packages/easy admin.yaml
+++ b/config/packages/easy admin.yaml
@@ -8,6 +8,7 @@ easy admin:
fields:
- author
- { property: 'email', type: 'email' }

+ - { property: 'photoFilename', type: 'image', 'base path':

"/uploads/photos”, label: 'Photo" }

143

- { property: 'createdAt', type: 'datetime' }
edit:
fields:

14.9 Excluding Uploaded Photos from Git

Don’t commit yet! We don’t want to store uploaded images in the Git
repository. Add the /public/uploads directory to the .gitignore file:

--- a/.gitignore
+++ b/.gitignore
@@ '1:3 +1)4 @@
+/public/uploads

###> symfony/framework-bundle ###
/.env.local

14.10 Storing Uploaded Files on Production Servers

The last step is to store the uploaded files on production servers. Why
would we have to do something special? Because most modern cloud
platforms use read-only containers for various reasons. SymfonyCloud is
no exception.

Not everything is read-only in a Symfony project. We try hard to generate
as much cache as possible when building the container (during the cache
warmup phase), but Symfony still needs to be able to write somewhere for
the user cache, the logs, the sessions if they are stored on the filesystem,
and more.

Have a look at .symfony.cloud.yaml, there is already a writeable mount for
the var/ directory. The var/ directory is the only directory where Symfony
writes (caches, logs, ...).

Let’s create a new mount for uploaded photos:

--- a/.symfony.cloud.yaml

144

+++ b/.symfony.cloud.yaml
@@ -26,6 +26,7 @@ disk: 512

mounts:
"/var": { source: local, source path: var }
+ "/public/uploads": { source: local, source path: uploads }
hooks:
build: |

You can now deploy the code and photos will be stored in the public/
uploads/ directory like our local version.

e Going Further

SymfonyCasts Forms tutorial;

How to customize Symfony Form rendering in HTML;
Validating Symfony Forms;

The Symfony Form Types reference;

The FlysystemBundle docs, which provides integration with
multiple cloud storage providers, such as AWS S3, Azure and
Google Cloud Storage;

The Symfony Configuration Parameters.
The Symfony Validation Constraints;
The Symfony Form Cheat Sheet.

145

https://symfonycasts.com/screencast/symfony-forms
https://symfony.com/doc/current/form/form_customization.html
https://symfony.com/doc/current/forms.html#validating-forms
https://symfony.com/doc/current/reference/forms/types.html
https://github.com/thephpleague/flysystem-bundle/blob/master/docs/1-getting-started.md
https://symfony.com/doc/current/configuration.html#configuration-parameters
https://symfony.com/doc/current/validation.html#basic-constraints
https://github.com/andreia/symfony-cheat-sheets/blob/master/Symfony2/how_symfony2_forms_works_en.pdf

Step 15
Securing the Admin Backend

The admin backend interface should only be accessible by trusted people.
Securing this area of the website can be done using the Symfony Security
component.

Like for Twig, the security component is already installed via transitive

dependencies. Let’s add it explicitly to the project’s composer. json file:

$ symfony composer req security

15.1 Defining a User Entity

Even if attendees won’t be able to create their own accounts on the
website, we are going to create a fully functional authentication system
for the admin. We will therefore only have one user, the website admin.

The first step is to define a User entity. To avoid any confusions, let’s
name it Admin instead.

To integrate the Admin entity with the Symfony Security authentication
system, it needs to follow some specific requirements. For instance, it

147

needs a password property.

Use the dedicated make:user command to create the Admin entity instead
of the traditional make:entity one:

$ symfony console make:user Admin

Answer the interactive questions: we want to use Doctrine to store the
admins (yes), use username for the unique display name of admins, and
each user will have a password (yes).

The generated class contains methods like getRoles(),
eraseCredentials(), and a few others that are needed by the Symfony
authentication system.

If you want to add more properties to the Admin user, use make:entity.

Let’sadd a __ toString() method as EasyAdmin likes those:

--- a/src/Entity/Admin.php

+++ b/src/Entity/Admin.php

@@ -74,6 +74,11 @@ class Admin implements UserInterface
return $this;

}
+ public function _ toString(): string
+ A
+ return $this->username;
+)
+
/**

* @see UserInterface
*/

In addition to generating the Admin entity, the command also updated the
security configuration to wire the entity with the authentication system:

--- a/config/packages/security.yaml
+++ b/config/packages/security.yaml
@@ -1,7 +1,15 @@

security:
+ encoders:
+ App\Entitv\Admin:
+ algorithm: auto
+

https://symfony.com/doc/current/security.html#where-do-users-come-from-

148

user-providers
providers:
- in_memory: { memory: null }
used to reload user from session & other features (e.g. switch user)
app_user _provider:
entitv:
class: App\Entitv\Admin
property: username

+ + 4+ + +

firewalls:
dev:
pattern: ~/(_(profiler|wdt)|css|images|js)/

We let Symfony select the best possible algorithm for encoding passwords
(which will evolve over time).

Time to generate a migration and migrate the database:

$ symfony console make:migration
$ symfony console doctrine:migrations:migrate -n

15.2 Generating a Password for the Admin User

We won’t develop a dedicated system to create admin accounts. Again,
we will only ever have one admin. The login will be admin and we need to
encode the password.

Choose whatever you like as a password and run the following command
to generate the encoded password:

$ symfony console security:encode-password

Symfony Password Encoder Utility

149

Encoder used Symfony\Component\Security\Core\Encoder\MigratingPasswordEncoder
Encoded password
$argon2id$v=19%$m=65536, t=4, p=1$BQG+jovPcunctc30xG5PxQ$TiGbx451INKdo+g9IvLtfkMy4KJASKSOcnNxjijag

I [NOTE] Self-salting encoder used: the encoder generated its own built-in salt.

[OK] Password encoding succeeded

15.3 Creating an Admin

Insert the admin user via an SQL statement:

$ symfony run psql -c "INSERT INTO admin (id, username, roles, password) \
VALUES (nextval('admin_id seq'), 'admin', "[\"ROLE_ADMIN\"]', \

"\$argon2id\$v=19\$m=65536,t=4,p=1\$BQG+jovPcunctc30xCG5PxQ\$TiGbx45INKdo+g9IvLtfkMy4KjASKSOcnN

Note the escaping of the $ sign in the password column value; escape
them all!

15.4 Configuring the Security Authentication

Now that we have an admin user, we can secure the admin backend.
Symfony supports several authentication strategies. Let’s use a classic and
popular form authentication system.

Run the make:auth command to update the security configuration,
generate a login template, and create an authenticator:

$ symfony console make:auth

Select 1 to generate a login form authenticator, name the authenticator
class AppAuthenticator, the controller SecurityController, and generate a
/logout URL (yes).

150

The command updated the security configuration to wire the generated
classes:

--- a/config/packages/security.yaml
+++ b/config/packages/security.yaml
@@ -16,6 +16,13 @@ security:
security: false
main:
anonymous: lazy
guard:
authenticators:
- App\Security\AppAuthenticator
logout:
path: app_logout
where to redirect after logout
target: app_any route

+ + + + + + +

activate different ways to authenticate

https://symfony.com/doc/current/security.html#firewalls-
authentication

As hinted by the command output, we need to customize the route in
the onAuthenticationSuccess() method to redirect the user when they
successfully sign in:

--- a/src/Security/AppAuthenticator.php
+++ b/src/Security/AppAuthenticator.php

@@ -94,8 +94,7 @@ class AppAuthenticator extends AbstractFormLoginAuthenticator
implements Passwor

return new RedirectResponse($targetPath);
}

- // For example : return new RedirectResponse($this->urlGenerator-
>generate('some_route'));

- throw new \Exception('TODO: provide a valid redirect inside
‘. FILE_);

+ return new RedirectResponse($this->urlGenerator-
>generate('easyadmin'));

protected function getloginUrl()

151

o How do [know that the EasyAdmin route is easyadmin? I don’t. But I
ran the following command that shows the association between route
names and paths:

$ symfony console debug:router

15.5 Adding Authorization Access Control Rules

A security system is made of two parts: authentication and authorization.
When creating the admin user, we gave them the ROLE_ADMIN role. Let’s
restrict the /admin section to users having this role by adding a rule to
access_control:

--- a/config/packages/security.yaml
+++ b/config/packages/security.yaml
@@ -33,5 +33,5 @@ security:
Easy way to control access for large sections of your site
Note: Only the *first* access control that matches will be used
access_control:
- { path: ~/admin. roles: ROLE ADMIN }
+ - { path: */admin, roles: ROLE_ADMIN }
- { path: ~/profile, roles: ROLE_USER }

The access_control rules restrict access by regular expressions. When
trying to access a URL that starts with /admin, the security system will
check for the ROLE_ADMIN role on the logged-in user.

15.6 Authenticating via the Login Form

If you try to access the admin backend, you should now be redirected to
the login page and prompted to enter a login and a password:

152

/login/

Guestbook

* Amsterdam 2019
o Paris 2020

Please sign in

Username “ Password Sign in

Log in using admin and whatever plain-text password you encoded earlier.
If you copied my SQL command exactly, the password is admin.

Note that FEasyAdmin automatically recognizes the Symfony
authentication system:

/admin/

Conference Guestbook

A" Back to the website
Conference Search CLRe, admin

9 Conferences

RN D ¥V City Year Is international Comments Sign out
2 Paris 2020 @] 0 Edit Delete
1 Amsterdam 2019 @) 4 Edit Delete
2 results

Loggedinas admin

Authenticated |Yes
Token class P
Firewall name main

Actions Logout

200 | P @easyad.. 53ms 60MB [E]2 £ 123 S@s L admin) 26ms W7 7 Ed sever @ 5041

Try to click on the “Sign out” link. You have it! A fully-secured backend
admin.

153

If you want to create a fully-featured form authentication system, have
a look at the make:registration-form command.

Q Going Further

The Symfony Security docs;

SymfonyCasts Security tutorial,

How to Build a Login Form in Symfony applications;

The Symfony Security Cheat Sheet.

154

https://symfony.com/doc/current/security.html
https://symfonycasts.com/screencast/symfony-security
https://symfony.com/doc/current/security/form_login_setup.html
https://github.com/andreia/symfony-cheat-sheets/blob/master/Symfony4/security_en_44.pdf

Step 16
Preventing Spam with an AP

Anyone can submit a feedback. Even robots, spammers, and more. We
could add some “captcha” to the form to somehow be protected from
robots, or we can use some third-party APIs.

[have decided to use the free Akismet service to demonstrate how to call
an API and how to make the call “out of band”.

16.1 Signing up on Akismet

Sign-up for a free account on akismet.com and get the Akismet API key.

16.2 Depending on Symfony HTTPClient Component

Instead of using a library that abstracts the Akismet API, we will do all
the API calls directly. Doing the HTTP calls ourselves is more efficient
(and allows us to benefit from all the Symfony debugging tools like the
integration with the Symfony Profiler).

155

https://akismet.com/
https://akismet.com/

To make API calls, use the Symfony HttpClient Component:

$ symfony composer req http-client

16.3 Designing a Spam Checker Class

Create a new class under src/ named SpamChecker to wrap the logic of
calling the Akismet API and interpreting its responses:

src/SpamChecker.php
App

App\Entity\Comment
Symfony\Contracts\HttpClient\HttpClientInterface

SpamChecker

$client
$endpoint

__construct(HttpClientInterface $client, string $akismetKey

$this->client = $client
$this->endpoint = sprintf('https://%s.rest.akismet.com/1.1/comment-
check', $akismetKey

/**

* @return int Spam score: 0: not spam, 1: maybe spam, 2: blatant spam
*

* @throws \RuntimeException if the call did not work
*/
getSpamScore(Comment $comment $context): int

$response = $this->client->request('POST', $this->endpoint

"body’ array merge($context
'blog' "https://guestbook.example.com’
‘comment_type' ‘comment’
‘comment_author'’ $comment - >getAuthor
‘comment_author_email’ $comment->getEmail
‘comment_content' $comment->getText
‘comment_date gmt' $comment - >getCreatedAt format('c’
'blog_lang' ‘en’
'blog charset' "UTF-8'
'is test'

156

$headers = $response->getHeaders
"discard’ $headers| 'x-akismet-pro-tip'|[0 v
2

$content = $response->getContent
isset($headers| 'x-akismet-debug-help' [0
\RuntimeException(sprintf('Unable to check for spam: %s
(%s).", $content, $headers|'x-akismet-debug-help"|[0

"true' $content 7 1 : 0O

The HTTP client request() method submits a POST request to the
Akismet URL ($this->endpoint) and passes an array of parameters.

The getSpamScore() method returns 3 values depending on the API call
response:

 2:if the comment is a “blatant spam”;
* 1:if the comment might be spam;

* 0: if the comment is not spam (ham).

Use the special akismet-guaranteed-spam@example.com email address to
force the result of the call to be spam.

16.4 Using Environment Variables

The SpamChecker class relies on an $akismetKey argument. Like for the
upload directory, we can inject it via a bind container setting:

--- a/config/services.yaml
+++ b/config/services.yaml
@@ -12,6 +12,7 @@ services:
autoconfigure: true # Automatically registers your services as

157

commands, event subscribers, etc.
bind:
$photoDir: "%kernel.project dir%/public/uploads/photos”
+ $akismetKey: "%env(AKISMET KEY)%"

makes classes in src/ available to be used as services
this creates a service per class whose id is the fully-qualified class
name

We certainly don’t want to hard-code the value of the Akismet key in the
services.yaml configuration file, so we are using an environment variable
instead (AKISMET KEY).

[t is then up to each developer to set a “real” environment variable or to
store the value in a .env.local file:

.env.local
AKISMET KEY=abcdef

For production, a “real” environment variable should be defined.

That works well, but managing many environment variables might
become cumbersome. In such a case, Symfony has a “better” alternative
when it comes to storing secrets.

16.5 Storing Secrets

Instead of using many environment variables, Symfony can manage a
vault where you can store many secrets. One key feature is the ability
to commit the vault in the repository (but without the key to open it).
Another great feature is that it can manage one vault per environment.

Secrets are environment variables in disguise.

Add the Akismet key in the vault:

$ symfony console secrets:set AKISMET KEY

Please type the secret value:
>

158

[OK] Secret "AKISMET KEY" encrypted in "config/secrets/dev/"; you can commit
it.

Because this is the first time we have run this command, it generated two
keys into the config/secret/dev/ directory. It then stored the AKISMET KEY
secret in that same directory.

For development secrets, you can decide to commit the vault and the keys
that have been generated in the config/secret/dev/ directory.

Secrets can also be overridden by setting an environment variable of the
same name.

16.6 Checking Comments for Spam

One simple way to check for spam when a new comment is submitted is
to call the spam checker before storing the data into the database:

--- a/src/Controller/ConferenceController.php

+++ b/src/Controller/ConferenceController.php
@@ -7,6 +7,7 @@ use App\Entity\Conference;

use App\Form\CommentFormType;

use App\Repository\CommentRepository;

use App\Repository\ConferenceRepository;
+use App\SpamChecker;

use Doctrine\ORM\EntityManagerInterface;

use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;

use Symfony\Component\HttpFoundation\File\Exception\FileException;
@@ -39,7 +40,7 @@ class ConferenceController extends AbstractController

/**
* @Route("/conference/{slug}", name="conference")
*/

- public function show(Request $request, Conference $conference,
CommentRepository $commentRepository, string $photoDir)
+ public function show(Request $request, Conference $conference,
CommentRepository $commentRepository, SpamChecker $spamChecker, string
$photoDir)

{
$comment = new Comment();
$form = $this->createForm(CommentFormType::class, $comment);
@@ -58,6 +59,17 @@ class ConferenceController extends AbstractController
}

159

$this->entityManager->persist($comment);

$context = [
'user_ip' => $request->getClientIp(),
'user_agent' => $request->headers->get('user-agent'),
‘referrer' => $request->headers->get('referer'),
‘permalink’' => $request->getUri(),

1;

if (2 === $spamChecker->getSpamScore($comment, $context)) {
throw new \RuntimeException('Blatant spam, go away!');

}

$this->entityManager->flush();

+ + + + + F + + + + o+

return $this->redirectToRoute('conference', ['slug' => $conference-
>getslug()]);

Check that it works fine.

16.7 Managing Secrets in Production

For production, SymfonyCloud supports setting sensitive environment
variables:

$ symfony var:set --sensitive AKISMET KEY-abcdef

But as discussed above, using Symfony secrets might be better. Not in
terms of security, but in terms of secret management for the project’s
team. All secrets are stored in the repository and the only environment
variable you need to manage for production is the decryption key. That
makes it possible for anyone in the team to add production secrets even
if they don’t have access to production servers. The setup is a bit more
involved though.

First, generate a pair of keys for production use:

$ APP_ENV=prod symfony console secrets:generate-keys

Re-add the Akismet secret in the production vault but with its production
value:

160

$ APP_ENV=prod symfony console secrets:set AKISMET KEY

The last step is to send the decryption key to SymfonyCloud by setting a
sensitive variable:

$ symfony var:set --sensitive SYMFONY_DECRYPTION SECRET="php -r ‘echo
base64 encode(include("config/secrets/prod/prod.decrypt.private.php”));""

You can add and commit all files; the decryption key has been added in
.gitignore automatically, so it will never be committed. For more safety,
you can remove it from your local machine as it has been deployed now:

$ rm -f config/secrets/prod/prod.decrypt.private.php

Q Going Further

* The HttpClient component docs;
e The Environment Variable Processors;

* The Symfony HttpClient Cheat Sheet.

161

https://symfony.com/doc/current/components/http_client.html
https://symfony.com/doc/current/configuration/env_var_processors.html
https://github.com/andreia/symfony-cheat-sheets/blob/master/Symfony4/httpclient_en_43.pdf

Step 17
Testing

As we start to add more and more functionality to the application, it is
probably the right time to talk about testing.

Fun fact: 1 found a bug while writing the tests in this chapter.

Symfony relies on PHPUnit for unit tests. Let’s install it:

$ symfony composer req phpunit

17.1 Writing Unit Tests

SpamChecker is the first class we are going to write tests for. Generate a unit
test:

$ symfony console make:unit-test SpamCheckerTest

Testing the SpamChecker is a challenge as we certainly don’t want to hit
the Akismet API. We are going to mock the API.

Let’s write a first test for when the API returns an error:

163

--- a/tests/SpamCheckerTest.php
+++ b/tests/SpamCheckerTest.php
@@ -2,12 +2,26 @@

namespace App\Tests;

+use App\Entity\Comment;
+use App\SpamChecker;
use PHPUnit\Framework\TestCase;
+use Symfony\Component\HttpClient\MockHttpClient;
+use Symfony\Component\HttpClient\Response\MockResponse;
+use Symfony\Contracts\HttpClient\ResponseInterface;

class SpamCheckerTest extends TestCase

{
- public function testSomething()

+ public function testSpamScoreWithInvalidRequest()

{

$this->assertTrue(true);
$comment = new Comment();
$comment->setCreatedAtValue();
$context = [];

$client = new MockHttpClient([new MockResponse('invalid',
response_headers' => ['x-akismet-debug-help: Invalid key']])]);
$checker = new SpamChecker($client, 'abcde');

$this->expectException(\RuntimeException::class);
$this->expectExceptionMessage('Unable to check for spam: invalid
Invalid key).');
$checker->getSpamScore($comment, $context);
}

+~+ + + + =+ + + + +

The MockHttpClient class makes it possible to mock any HTTP server. It
takes an array of MockResponse instances that contain the expected body
and Response headers.

Then, we call the getSpamScore() method and check that an exception is
thrown via the expectException() method of PHPUnit.

Run the tests to check that they pass:

$ symfony php bin/phpunit

Let’s add tests for the happy path:

164

--- a/tests/SpamCheckerTest.php
+++ b/tests/SpamCheckerTest.php
@@ -24,4 +24,32 @@ class SpamCheckerTest extends TestCase
$this->expectExceptionMessage('Unable to check for spam: invalid
(Invalid key).');
$checker->getSpamScore($comment, $context);
}

/**

* @dataProvider getComments

*/

public function testSpamScore(int $expectedScore, Responselnterface
response, Comment $comment, array $context)

$client = new MockHttpClient([$response]);
$checker = new SpamChecker($client, 'abcde');

$score = $checker->getSpamScore($comment, $context);
$this->assertSame($expectedScore, $score);

}

public function getComments(): iterable
{
$comment = new Comment();
$comment->setCreatedAtValue();
$context = [];

$response = new MockResponse('', ['response headers' => ['x-akismet-
ro-tip: discard']]);
yield 'blatant_spam' => [2, $response, $comment, $context];

$response = new MockResponse('true');
yield 'spam' => [1, $response, $comment, $context];

$response = new MockResponse('false');
yield 'ham' => [0, $response, $comment, $context];

+ + 4+ + + + + F T + F A+ F o+ F A+ F A+ o+

PHPUnit data providers allow us to reuse the same test logic for several
test cases.

17.2 Writing Functional Tests for Controllers

Testing controllers is a bit different than testing a “regular” PHP class as
we want to run them in the context of an HTTP request.

165

Install some extra dependencies needed for functional tests:

$ symfony composer require browser-kit --dev

Create a functional test for the Conference controller:

tests/Controller/ConferenceController Test.php
App\Tests\Controller

Symfony\Bundle\FrameworkBundle\Test\WebTestCase

ConferenceControllerTest WebTestCase
testIndex
$client createClient

$client->request('GET", "/’

$this->assertResponselsSuccessful
$this->assertSelectorTextContains('h2", 'Give your feedback'

This first test checks that the homepage returns a 200 HTTP response.

The $client variable simulates a browser. Instead of making HTTP calls
to the server though, it calls the Symfony application directly. This
strategy has several benefits: it is much faster than having round-trips
between the client and the server, but it also allows the tests to introspect
the state of the services after each HTTP request.

Assertions such as assertResponseIsSuccessful are added on top of
PHPUnit to ease your work. There are many such assertions defined by
Symfony.

We have used / for the URL instead of generating it via the router.
This is done on purpose as testing end-user URLSs is part of what we
want to test. If you change the route path, tests will break as a nice
reminder that you should probably redirect the old URL to the new
one to be nice with search engines and websites that link back to your
website.

166

0 We could have generated the test via the maker bundle:

$ symfony console make:functional-test Controller\\ConferenceController

PHPUnit tests are executed in a dedicated test environment. We must set
the AKISMET KEY secret for this environment:

$ APP_ENV-test symfony console secrets:set AKISMET KEY

Run the new tests only by passing the path to their class:

$ symfony php bin/phpunit tests/Controller/ConferenceControllerTest.php

When a test fails, it might be useful to introspect the Response object.
Access it via $client->getResponse() and echo it to see what it looks

like.

17.3 Defining Fixtures

To be able to test the comment list, the pagination, and the form
submission, we need to populate the database with some data. And we
want the data to be the same between test runs to make the tests pass.
Fixtures are exactly what we need.

Install the Doctrine Fixtures bundle:
$ symfony composer req orm-fixtures --dev
A new src/DataFixtures/ directory has been created during the

installation with a sample class, ready to be customized. Add two
conferences and one comment for now:

--- a/src/DataFixtures/AppFixtures.php
+++ b/src/DataFixtures/AppFixtures.php
@@ -2,6 +2,8 @@

namespace App\DataFixtures;

167

+use App\Entity\Comment;

+use App\Entity\Conference;
use Doctrine\Bundle\FixturesBundle\Fixture;
use Doctrine\Common\Persistence\ObjectManager;

@@ -9,8 +11,24 @@ class AppFixtures extends Fixture

{
public function load(ObjectManager $manager)

{

// $product = new Product();

// $manager->persist($product);
$amsterdam = new Conference();
$amsterdam->setCity('Amsterdam');
$amsterdam->setYear('2019");
$amsterdam->setIsInternational(true);
$manager->persist($amsterdam);

$paris = new Conference();
$paris->setCity('Paris");
$paris->setYear('2020");
$paris->setIsInternational(false);
$manager->persist($paris);

$commentl = new Comment();
$commentl->setConference($amsterdam);
$commentl->setAuthor('Fabien');
$commentl->setEmail (' fabien@example.com');
$commentl->setText('This was a great conference.');
$manager->persist($commentl);

+ + F + + F + + F o+ F o+ o+ o+

$manager->flush();

When we will load the fixtures, all data will be removed; including the
admin user. To avoid that, let’s add the admin user in the fixtures:

--- a/src/DataFixtures/AppFixtures.php
+++ b/src/DataFixtures/AppFixtures.php
@@ -2,13 +2,22 @@

namespace App\DataFixtures;

+use App\Entity\Admin;
use App\Entity\Comment;
use App\Entity\Conference;
use Doctrine\Bundle\FixturesBundle\Fixture;
use Doctrine\Common\Persistence\ObjectManager;

168

+use Symfony\Component\Security\Core\Encoder\EncoderFactoryInterface;

class AppFixtures extends Fixture

{
+ private $encoderFactory;
+
+ public function _ construct(EncoderFactoryInterface $encoderFactory)
+ A
+ $this->encoderFactory = $encoderFactory;
+)
+

public function load(ObjectManager $manager)

{
$amsterdam = new Conference();
@@ -30,6 +39,12 @@ class AppFixtures extends Fixture
$commentl->setText('This was a great conference.');
$manager->persist($commentl);

+ $admin = new Admin();

+ $admin->setRoles (['ROLE_ADMIN']);

+ $admin->setUsername('admin');

+ $admin->setPassword($this->encoderFactory->getEncoder(Admin::class)-
>encodePassword('admin', null));

+ $manager->persist($admin);

+

$manager->flush();

If you don’t remember which service you need to use for a given task,
use the debug:autowiring with some keyword:

$ symfony console debug:autowiring encoder

17.4 Loading Fixtures

Load the fixtures into the database. Be warned that it will delete all data
currently stored in the database (if you want to avoid this behavior, keep
reading).

$ symfony console doctrine:fixtures:load

169

17.5 Crawling a Website in Functional Tests

As we have seen, the HTTP client used in the tests simulates a browser,
so we can navigate through the website as if we were using a headless
browser.

Add a new test that clicks on a conference page from the homepage:

--- a/tests/Controller/ConferenceControllerTest.php
+++ b/tests/Controller/ConferenceControllerTest.php

@@

+ + 4+ + F F + F o+ + o+ + o+

-14,4 +14,19 @@ class ConferenceControllerTest extends WebTestCase

$this->assertResponseIsSuccessful();
$this->assertSelectorTextContains('h2', 'Give your feedback');

}

public function testConferencePage()

{

$client = static::createClient();
$crawler = $client->request('GET', '/');

$this->assertCount(2, $crawler->filter('h4"));
$client->clickLink('View");
$this->assertPageTitleContains('Amsterdam');
$this->assertResponseIsSuccessful();

$this->assertSelectorTextContains('h2", 'Amsterdam 2019');
$this->assertSelectorExists('div:contains("There are 1 comments")');

Let’s describe what happens in this test in plain English:

170

Like the first test, we go to the homepage;

The request() method returns a Crawler instance that helps find
elements on the page (like links, forms, or anything you can reach
with CSS selectors or XPath);

Thanks to a CSS selector, we assert that we have two conferences
listed on the homepage;

We then click on the “View” link (as it cannot click on more than one
link at a time, Symfony automatically chooses the first one it finds);

We assert the page title, the response, and the page <h2> to be sure we

are on the right page (we could also have checked for the route that
matches);

* Finally, we assert that there is 1 comment on the page. div:contains()
is not a valid CSS selector, but Symfony has some nice additions,
borrowed from jQuery.

Instead of clicking on text (i.e. View), we could have selected the link via a
CSS selector as well:

$client->click($crawler->filter('h4 + p a')->1link

Check that the new test is green:

$ symfony php bin/phpunit tests/Controller/ConferenceControllerTest.php

17.6 Working with a Test Database

By default, tests are run in the test Symfony environment as defined in
the phpunit.xml.dist file:

phpunit.xml.dist
<phpunit>
<php>
<server name="APP_ENV" value="test" force="true" />
</php>
</phpunit>

If you want to use a different database for your tests, override the
DATABASE _URL environment variable in the .env.test file:

--- a/.env.test
+++ b/.env.test
@@ -1,4 +1,5 @@

define your env variables for the test env here
+DATABASE_URL=postgres://main:main@127.0.0.1:32773/
test?sslmode=disabled&charset=utf8

KERNEL_CLASS="App\Kernel'

APP_SECRET="'$ecretfOrt3st’

SYMFONY_DEPRECATIONS HELPER=999999

171

Load the fixtures for the test environment/database:

$ APP_ENV-test symfony console doctrine:fixtures:load

For the rest of this step, we won’t redefine the DATABASE_URL environment
variable. Using the same database as the dev environment for tests has
some advantages we will see in the next section.

17.7 Submitting a Form in a Functional Test

Do you want to get to the next level? Try adding a new comment with a
photo on a conference from a test by simulating a form submission. That
seems ambitious, doesn’t it? Look at the needed code: not more complex
than what we already wrote:

--- a/tests/Controller/ConferenceControllerTest.php

+++ b/tests/Controller/ConferenceControllerTest.php

@@ -29,4 +29,19 @@ class ConferenceControllerTest extends WebTestCase
$this->assertSelectorTextContains('h2', 'Amsterdam 2019');
$this->assertSelectorExists('div:contains("There are 1 comments")');

}

public function testCommentSubmission()
{
$client = static::createClient();
$client->request('GET', '/conference/amsterdam-2019');
$client->submitForm('Submit', [
‘comment_form[author]' => 'Fabien’,
"comment_form[text]' => 'Some feedback from an automated
unctional test',
"comment_form[email]' => 'me@automat.ed’,
‘comment_form[photo]' => dirname(_DIR , 2).'/public/images/under-
construction.gif’,
+ D;
$this->assertResponseRedirects();
$client->followRedirect();
$this->assertSelectorExists('div:contains("There are 2 comments")');

+ + s+ + + + + + + +

+ + + +

To submit a form via submitForm(), find the input names thanks to the
browser DevTools or via the Symfony Profiler Form panel. Note the
clever re-use of the under construction image!

172

Run the tests again to check that everything is green:

$ symfony php bin/phpunit tests/Controller/ConferenceControllerTest.php

One advantage of using the “dev” database for tests is that you can check
the result in a browser:

/conference/amsterdam-2019

Guestbook

* Amsterdam 2019
« Paris 2020

Amsterdam 2019 Conference

There are 2 comments.

(LI

Fabien

Dec 6, 2019, 11:56 AM

Some feedback from an automated functional test
Fabien

Dec 6, 2019, 11:56 AM

17.8 Reloading the Fixtures

If you run the tests a second time, they should fail. As there are now
more comments in the database, the assertion that checks the number of
comments is broken. We need to reset the state of the database between
each run by reloading the fixtures before each run:

$ symfony console doctrine:fixtures:load
$ symfony php bin/phpunit tests/Controller/ConferenceControllerTest.php

17.9 Automating your Workflow with a Makefile

Having to remember a sequence of commands to run the tests is

173

annoying. This should at least be documented. But documentation
should be a last resort. Instead, what about automating day to day
activities? That would serve as documentation, help discovery by other
developers, and make developer lives easier and fast.

Using a Makefile is one way to automate commands:

Makefile
SHELL /bin/bash

tests
symfony console doctrine:fixtures:load -n
symfony php bin/phpunit

.PHONY: tests

Note the -n flag on the Doctrine command; it is a global flag on Symfony
commands that makes them non interactive.

Whenever you want to run the tests, use make tests:

$ make tests

17.10 Resetting the Database after each Test

Resetting the database after each test run is nice, but having truly
independent tests is even better. We don’t want one test to rely on the
results of the previous ones. Changing the order of the tests should not
change the outcome. As we’re going to figure out now, this is not the case
for the moment.

Move the testConferencePage test after the testCommentSubmission one:

--- a/tests/Controller/ConferenceControllerTest.php
+++ b/tests/Controller/ConferenceControllerTest.php
@@ -15,21 +15,6 @@ class ConferenceControllerTest extends WebTestCase
$this->assertSelectorTextContains('h2', 'Give your feedback');
}

- public function testConferencePage()
- A{

- $client = static::createClient();

174

- $crawler = $client->request('GET', '/");
- $this->assertCount(2, $crawler->filter('h4"));
- $client->clickLink('View");

- $this->assertPageTitleContains('Amsterdam');

- $this->assertResponseIsSuccessful();

- $this->assertSelectorTextContains('h2', 'Amsterdam 2019');

- $this->assertSelectorExists('div:contains("There are 1 comments")');

public function testCommentSubmission()

{
$client = static::createClient();
@@ -44,4 +29,19 @@ class ConferenceControllerTest extends WebTestCase
$crawler = $client->followRedirect();
$this->assertSelectorExists('div:contains("There are 2 comments")');

}

public function testConferencePage()

{

$client = static::createClient();
$crawler = $client->request('GET', '/");

$this->assertCount(2, $crawler->filter('h4'));
$client->clickLink('View'");
$this->assertPageTitleContains('Amsterdam');
$this->assertResponseIsSuccessful();

$this->assertSelectorTextContains('h2', 'Amsterdam 2019');
$this->assertSelectorExists('div:contains("There are 1 comments™")');

+ + + + + F + + F + F++ ++

Tests now fail.

To reset the database between tests, install DoctrineTestBundle:

$ symfony composer require dama/doctrine-test-bundle --dev

You will need to confirm the execution of the recipe (as it is not an
“officially” supported bundle):

Symfony operations: 1 recipe (d7f110145ba9f62430d1ad64d57ab069)
- WARNING dama/doctrine-test-bundle (>=4.0): From github.com/symfony/

175

recipes-contrib:master

The recipe for this package comes from the "contrib" repository, which is
open to community contributions.

Review the recipe at https://github.com/symfony/recipes-contrib/tree/master/
dama/doctrine-test-bundle/4.0

Do you want to execute this recipe?
[y] Yes

[n] No

[a] Yes for all packages, only for the current installation session
[p] Yes permanently, never ask again for this project

(defaults to n): p

Enable the PHPUnit listener:

--- a/phpunit.xml.dist
+++ b/phpunit.xml.dist
@@ -27,6 +27,10 @@
</whitelist>
</filter>

<extensions>
<extension class="DAMA\DoctrineTestBundle\PHPUnit\PHPUnitExtension" />
</extensions>

+ + + +

<listeners>
<listener class="Symfony\Bridge\PhpUnit\SymfonyTestsListener" />
</listeners>

And done. Any changes done in tests are now automatically rolled-back
at the end of each test.

Tests should be green again:

$ make tests

17.11 Using a real Browser for Functional Tests

Functional tests use a special browser that calls the Symfony layer
directly. But you can also use a real browser and the real HTTP layer
thanks to Symfony Panther:

176

At the time I wrote this paragraph, it was not possible to install
Panther on a Symfony 5 project as one dependency was not
compatible yet.

$ symfony composer req panther --dev

You can then write tests that use a real Google Chrome browser with the
following changes:

--- a/tests/Controller/ConferenceControllerTest.php
+++ b/tests/Controller/ConferenceControllerTest.php
@@ -2,13 +2,13 @@

namespace App\Tests\Controller;

-use Symfony\Bundle\FrameworkBundle\Test\WebTestCase;
+use Symfony\Component\Panther\PantherTestCase;

-class ConferenceControllerTest extends WebTestCase
+class ConferenceControllerTest extends PantherTestCase

{
public function testIndex()

{

- $client = static::createClient();
+ $client = static::createPantherClient(['external base uri' =>
$_SERVER['SYMFONY DEFAULT ROUTE_URL']]);

$client->request('GET', '/");

$this->assertResponseIsSuccessful();

The SYMFONY DEFAULT ROUTE_URL environment variable contains the URL of
the local web server.

17.12 Running Black Box Functional Tests with
Blackfire

Another way to run functional tests is to use the Blackfire player. In
addition to what you can do with functional tests, it can also perform
performance tests.

Refer to the step about “Performance” to learn more.

177

https://blackfire.io/player

e Going Further

List of assertions defined by Symfony for functional tests;
e PHPUnit docs;
* The Faker library to generate realistic fixtures data;
* The CssSelector component docs;

* The Symfony Panther library for browser testing and web crawling
in Symfony applications;

* The Make/Makefile docs.

178

https://symfony.com/doc/current/testing/functional_tests_assertions.html
https://phpunit.de/documentation.html
https://github.com/fzaninotto/Faker
https://symfony.com/doc/current/components/css_selector.html
https://github.com/symfony/panther
https://www.gnu.org/software/make/manual/make.html

Step 18

Going Async

Checking for spam during the handling of the form submission might
lead to some problems. If the Akismet API becomes slow, our website will
also be slow for users. But even worse, if we hit a timeout or if the Akismet
API is unavailable, we might lose comments.

Ideally, we should store the submitted data without publishing it, and
immediately return a response. Checking for spam can then be done out

of band.

18.1 Flagging Comments

We need to introduce a state for comments: submitted, spam, and
published.

Add the state property to the Comment class:

$ symfony console make:entity Comment

Create a database migration:

179

$ symfony console make:migration

Modify the migration to update all existing comments to be published by
default:

--- a/src/Migrations/Version00000000000000.php
+++ b/src/Migrations/Version00000000000000.php
@@ -22,7 +22,9 @@ final class Version00000000000000 extends AbstractMigration
// this up() migration is auto-generated, please modify it to your
needs
$this->abortIf($this->connection->getDatabasePlatform()->getName() !==
"postgresql', 'Migration can only be executed safely on \'postgresql\'.');

$this->addSql('ALTER TABLE comment ADD state VARCHAR(255) NOT NULL');
$this->addSql('ALTER TABLE comment ADD state VARCHAR(255)'");
$this->addSql("UPDATE comment SET state='published'");
$this->addSql('ALTER TABLE comment ALTER COLUMN state SET NOT NULL');

+ + +

}

public function down(Schema $schema) : void

Migrate the database:

$ symfony console doctrine:migrations:migrate

We should also make sure that, by default, the state is set to submitted:

--- a/src/Entity/Comment.php

+++ b/src/Entity/Comment.php

@@ -49,9 +49,9 @@ class Comment
private $photoFilename;

Ve
* @ORM\Column(type="string", length=255)

* @ORM\Column(type="string", length=255, options={"default": "submitted"})
*/

- private $state;

+ private $state = 'submitted’;

+

public function _ toString(): string
{

Update the EasyAdmin configuration to be able to see the comment’s
state:

180

--- a/config/packages/easy _admin.yaml
+++ b/config/packages/easy admin.yaml
@@ -18,6 +18,7 @@ easy admin:
- author
- { property: 'email', type: 'email' }

- { property: 'photoFilename', type: 'image', 'base path':

"/uploads/photos”, label: 'Photo" }
+ - state
- { property: 'createdAt', type: 'datetime’ }
sort: ['createdAt', 'ASC']
filters: ['conference']
@@ -26,5 +27,6 @@ easy admin:
- { property: 'conference' }
- { property: 'createdAt', type: datetime, type options:
attr: { readonly: true } } }
"author’
{ property: 'state' }
{ property: 'email', type: ‘email"' }
text

+

Don’t forget to also update the tests by setting the state of the fixtures:

--- a/src/DataFixtures/AppFixtures.php

+++ b/src/DataFixtures/AppFixtures.php

@@ -37,8 +37,16 @@ class AppFixtures extends Fixture
$commentl->setAuthor('Fabien');
$commentl->setEmail (' fabien@example.com');
$commentl->setText('This was a great conference.');

+ $commentl->setState('published');
$manager->persist($commentl);

$comment2 = new Comment();

$comment2->setConference($amsterdam);
$comment2->setAuthor('Lucas');
$comment2->setEmail (' lucas@example.com');

$comment2->setText('I think this one is going to be moderated.');
$manager->persist($comment2);

+ + + + + + +

$admin = new Admin();
$admin->setRoles (['ROLE_ADMIN']);
$admin->setUsername('admin');

For the controller tests, simulate the validation:

--- a/tests/Controller/ConferenceControllerTest.php
+++ b/tests/Controller/ConferenceControllerTest.php
@@ -2,6 +2,8 @@

{

181

namespace App\Tests\Controller;

+use App\Repository\CommentRepository;
+use Doctrine\ORM\EntityManagerInterface;
use Symfony\Bundle\FrameworkBundle\Test\WebTestCase;

class ConferenceControllerTest extends WebTestCase
@@ -22,11 +24,17 @@ class ConferenceControllerTest extends WebTestCase
$client->submitForm('Submit', [

‘comment_form[author]' => 'Fabien’,
‘comment_form[text]' => 'Some feedback from an automated

functional test',

- "comment_form[email]' => 'me@automat.ed’,

+ "comment_form[email]' => $email = 'me@automat.ed’,
"comment_form[photo]' => dirname(__DIR_, 2).'/public/images/under-

construction.gif',

D;

$this->assertResponseRedirects();

+
+ // simulate comment validation

+ $comment = self::$container->get(CommentRepository::class)-
>findOneByEmail($email);

+ $comment->setState('published");

+ self::$container->get(EntityManagerInterface::class)->flush();
+

$client->followRedirect();
$this->assertSelectorExists('div:contains("There are 2 comments")');

From a PHPUnit test, you can get any service from the container via
self::$container->get(); it also gives access to non-public services.

18.2 Understanding Messenger

Managing asynchronous code with Symfony is the job of the Messenger
Component:

$ symfony composer req messenger
When some logic should be executed asynchronously, send a message

to a messenger bus. The bus stores the message in a queue and returns
immediately to let the flow of operations resume as fast as possible.

182

A consumer runs continuously in the background to read new messages
on the queue and execute the associated logic. The consumer can run on
the same server as the web application or on a separate one.

[t is very similar to the way HTTP requests are handled, except that we
don’t have responses.

18.3 Coding a Message Handler

A message is a data object class that should not hold any logic. It will be
serialized to be stored in a queue, so only store “simple” serializable data.

Create the CommentMessage class:

src/Message/CommentMessage.php
App\Message

CommentMessage

$id
$context

__construct(int $id $context

$this->id = $id
$this->context = $context

getId int
$this->id
getContext

$this->context

In the Messenger world, we don’t have controllers, but message handlers.

Create a CommentMessageHandler class under a new App\MessageHandler
namespace that knows how to handle CommentMessage messages:

183

src/MessageHandler/CommentMessageHandler.php
App\MessageHandler

App\Message\CommentMessage
App\Repository\CommentRepository

App\SpamChecker

Doctrine\ORM\EntityManagerInterface
Symfony\Component\Messenger\Handler\MessageHandlerInterface

CommentMessageHandler MessageHandlerInterface
$spamChecker

$entityManager
$commentRepository

__construct(EntityManagerInterface $entityManager

SpamChecker $spamChecker, CommentRepository $commentRepository
$this->entityManager - $entityManager
$this->spamChecker = $spamChecker
$this->commentRepository = $commentRepository

__invoke(CommentMessage $message

$comment = $this->commentRepository->find($message->getld
$comment

2 $this->spamChecker->getSpamScore($comment
$message- >getContext
$comment->setState(' spam’

$comment->setState('published’

$this->entityManager->flush

MessageHandlerInterface is a marker interface. It only helps Symfony
auto-register and auto-configure the class as a Messenger handler. By
convention, the logic of a handler lives in a method called __invoke(). The
CommentMessage type hint on this method’s one argument tells Messenger

which class this will handle.

Update the controller to use the new system:

184

--- a/src/Controller/ConferenceController.php
+++ b/src/Controller/ConferenceController.php
@@ -5,14 +5,15 @@ namespace App\Controller;
use App\Entity\Comment;
use App\Entity\Conference;
use App\Form\CommentFormType;
+use App\Message\CommentMessage;
use App\Repository\CommentRepository;
use App\Repository\ConferenceRepository;
-use App\SpamChecker;
use Doctrine\ORM\EntityManagerInterface;
use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;
use Symfony\Component\HttpFoundation\File\Exception\FileException;
use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpFoundation\Response;
+use Symfony\Component\Messenger\MessageBusInterface;
use Symfony\Component\Routing\Annotation\Route;
use Twig\Environment;

@@ -20,11 +21,13 @@ class ConferenceController extends AbstractController

{
private $twig;
private $entityManager;
+ private $bus;

- public function _ construct(Environment $twig, EntityManagerInterface

$entityManager)

+ public function _ construct(Environment $twig, EntityManagerInterface

$entityManager, MessageBusInterface $bus)

{
$this->twig = $twig;
$this->entityManager = $entityManager;
+ $this->bus = $bus;
}
/**
@@ -40,7 +43,7 @@ class ConferenceController extends AbstractController
/**

* @Route("/conference/{slug}", name="conference")
*/
- public function show(Request $request, Conference $conference,
CommentRepository $commentRepository, SpamChecker $spamChecker, string
$photoDir)
+ public function show(Request $request, Conference $conference,
CommentRepository $commentRepository, string $photoDir)
{
$comment = new Comment();
$form = $this->createForm(CommentFormType::class, $comment);
@@ -59,6 +62,7 @@ class ConferenceController extends AbstractController

185

}

$this->entityManager->persist($comment);
+ $this->entityManager->flush();

$context = [
'user_ip' => $request->getClientIp(),
@@ -66,11 +70,8 @@ class ConferenceController extends AbstractController
'referrer' => $request->headers->get('referer'),
"permalink’' => $request->getUri(),
15
- if (2 === $spamChecker->getSpamScore($comment, $context)) {
- throw new \RuntimeException('Blatant spam, go away!');

- }

- $this->entityManager->flush();
+ $this->bus->dispatch(new CommentMessage($comment->getId(),
$context));

return $this->redirectToRoute('conference', ['slug' => $conference-
>getSlug()1);
}

Instead of depending on the Spam Checker, we now dispatch a message
on the bus. The handler then decides what to do with it.

We have achieved something unexpected. We have decoupled our
controller from the Spam Checker and moved the logic to a new class,
the handler. It is a perfect use case for the bus. Test the code, it works.
Everything is still done synchronously, but the code is probably already
“better”.

18.4 Restricting Displayed Comments

Update the display logic to avoid non-published comments from
appearing on the frontend:

--- a/src/Repository/CommentRepository.php
+++ b/src/Repository/CommentRepository.php
@@ -25,7 +25,9 @@ class CommentRepository extends ServiceEntityRepository
{
return $this->createQueryBuilder('c")
->andWhere('c.conference = :conference')

186

+ ->andWhere('c.state = :state')
->setParameter('conference', $conference)

+ ->setParameter('state', 'published")
->orderBy('c.createdAt', 'DESC')
->setMaxResults($limit)
->setFirstResult($offset)

18.5 Going Async for Real

By default, handlers are called synchronously. To go async, you need to
explicitly configure which queue to use for each handler in the config/
packages/messenger.yaml configuration file:

--- a/config/packages/messenger.yaml
+++ b/config/packages/messenger.yaml
@@ -5,10 +5,10 @@ framework:

transports:
https://symfony.com/doc/current/messenger.htmlfitransport-
configuration
- # async: "%env(MESSENGER_TRANSPORT DSN)%'
+ async: '%env(RABBITMQ DSN)%'

failed: 'doctrine://default?queue name=failed'
sync: 'sync://'

routing:
Route your messages to the transports

- # 'App\Message\YourMessage': async
+ App\Message\CommentMessage: async

The configuration tells the bus to send instances of App\Message\

CommentMessage to the async queue, which is defined by a DSN, stored in
the RABBITMQ DSN environment variable.

18.6 Adding RabbitMQ to the Docker Stack

As you might have guessed, we are going to use RabbitMQ:

--- a/docker-compose.yaml

187

+++ b/docker-compose.yaml
@@ -12,3 +12,7 @@ services:
redis:
image: redis:5-alpine
ports: [6379]

rabbitmq:
image: rabbitmq:3.7-management
ports: [5672, 15672]

+ + + +

18.7 Restarting Docker Services

To force Docker Compose to take the RabbitMQ container into account,
stop the containers and restart them:

$ docker-compose stop
$ docker-compose up -d

e Dumping and Restoring Database Data

Never call docker-compose down if you don’t want to lose data. Or
backup first. Use pg_dump to dump the database data:

$ symfony run pg_dump --data-only > dump.sql

And restore the data:

$ symfony run psql < dump.sql

18.8 Consuming Messages

If you try to submit a new comment, the spam checker won’t be called
anymore. Add an error log() call in the getSpamScore() method to
confirm. Instead, a message is waiting in RabbitMQ, ready to be
consumed by some processes.

As you might imagine, Symfony comes with a consumer command. Run

188

1t NOW:

$ symfony console messenger:consume async -vv

[t should immediately consume the message dispatched for the submitted
comment:

[OK] Consuming messages from transports "async".

// The worker will automatically exit once it has received a stop signal via
the messenger:stop-workers command.

// Quit the worker with CONTROL-C.

11:30:20 INFO [messenger] Received message App\Message\CommentMessage
["message" => App\Message\CommentMessage” { ..},"class" => "App\Message\
CommentMessage"]

11:30:20 INFO [http client] Request: "POST
https://80cea32belf6.rest.akismet.com/1.1/comment-check"

11:30:20 INFO [http client] Response: "200
https://80cea32belf6.rest.akismet.com/1.1/comment-check"

11:30:20 INFO [messenger] Message App\Message\CommentMessage handled by
App\MessageHandler\CommentMessageHandler:: invoke ["message" => App\Message\
CommentMessage™ { ..},"class" => "App\Message\CommentMessage","handler" => "App\
MessageHandler\CommentMessageHandler:: invoke"]

11:30:20 INFO [messenger] App\Message\CommentMessage was handled
successfully (acknowledging to transport). ["message" => App\Message\
CommentMessage” { ..},"class" => "App\Message\CommentMessage"]

The message consumer activity is logged, but you get instant feedback on
the console by passing the -vv flag. You should even be able to spot the
call to the Akismet API.

To stop the consumer, press Ctrl+C.

18.9 Exploring the RabbitMQ Web Management
Interface

If you want to see queues and messages flowing through RabbitMQ, open
its web management interface:

$ symfony open:local:rabbitmg

189

Or from the web debug toolbar:

Guestbook

o Amsterdam 2019
o Paris 2020

Give your feedback!
Amsterdam 2019

View

Paris 2020

View

200 @ homepage 118 ms 4.0 MB \’\4 182

Use guest/guest to login

190

ERabbit 3.7.20

LR anon.) 6ms

=2

Server PHP FPM 7.3.11
Tunnel Down
Docker Compose [Up

Env Vars from Docker
RabbitMQ Ul

Webmail Down

Blackfire.io Agent Down

Server

to the RabbitMQ management UI:

Erlang 22.1.5

m ¢ i ch

Admin

Queues

Refreshed 2019-12-06 11:58:27 | Refresh every 5 seconds

Virtual host | All ¥
Cluster rabbit@0dfdaf422daa

User guest

Uvervicew

Totals
Queued messages last minute ?
Currently idle
Message rates last minute ?
Currently idle

Global counts ?

Nodes

Name File descriptors ?

rabbit@0dfdaf422daa 79

1048576 available

Churn statistics

Socket descriptors Erlang processes
?

0
943626 available

BO5)
1048576 available

Memory ?

96MiB
6.0GiB high watermark

Disk space Uptime

379GiB Om 14s
48MiB low watermark

Info R
basic .
disc 1 l
rss

18.10 Running Workers in the Background

Instead of launching the consumer every time we post a comment and
stopping it immediately after, we want to run it continuously without
having too many terminal windows or tabs open.

The Symfony CLI can manage such background commands or workers
by using the daemon flag (-d) on the run command.

Run the message consumer again, but send it in the background:

$ symfony run -d --watch-config,src,templates,vendor symfony console
messenger:consume async

The --watch option tells Symfony that the command must be restarted
whenever there is a filesystem change in the config/, src/, templates/, or
vendor/ directories.

Do not use -vv as you would have duplicated messages in server:log
(logged messages and console messages).

If the consumer stops working for some reason (memory limit, bug, ...),
it will be restarted automatically. And if the consumer fails too fast, the
Symfony CLI will give up.

Logs are streamed via symfony server:log with all the other logs coming
from PHP, the web server, and the application:

$ symfony server:log
Use the server:status command to list all background workers managed
for the current project:

$ symfony server:status
Web server listening on https://127.0.0.1:8000

Command symfony console messenger:consume async running with PID 15774
watching config/, src/, templates/

To stop a worker, stop the web server or kill the PID given by the
server:status command:

191

$ kill 15774

18.11 Retrying Failed Messages

What if Akismet is down while consuming a message? There is no impact
for people submitting comments, but the message is lost and spam is not

checked.

Messenger has a retry mechanism for when an exception occurs while
handling a message. Let’s configure it:

--- a/config/packages/messenger.yaml
+++ b/config/packages/messenger.yaml
@@ -5,10 +5,17 @@ framework:

transports:
https://symfony.com/doc/current/messenger.htmliitransport-
configuration
- async: '%env(RABBITMQ DSN)%'
- # failed: 'doctrine://default?queue _name=failed'
async:
dsn: '%env(RABBITMQ DSN)%'
retry strategy:
max_retries: 3
multiplier: 2

+ + + + + + +

failed: 'doctrine://default?queue name=failed'
sync: 'sync://'

-+

failure transport: failed

routing:
Route your messages to the transports
App\Message\CommentMessage: async

If a problem occurs while handling a message, the consumer will retry 3
times before giving up. But instead of discarding the message, it will store
it in a more permanent storage, the failed queue, which uses the Doctrine
database.

Inspect failed messages and retry them via the following commands:

192

$ symfony console messenger:failed:show

$ symfony console messenger:failed:retry

18.12 Deploying RabbitMQ

Adding RabbitMQ to the production servers can be done by adding it to
the list of services:

--- a/.symfony/services.yaml
+++ b/.symfony/services.yaml
@@ -5,3 +5,8 @@ db:

rediscache:
type: redis:5.0
+
+queue:
+ type: rabbitmq:3.7
+ disk: 1024
+ size: S

Reference it in the web container configuration as well and enable the
amgp PHP extension:

--- a/.symfony.cloud.yaml
+++ b/.symfony.cloud.yaml

@@ -4,6 +4,7 @@ type: php:7.3

runtime:
extensions:
+ - amgp
- redis
- pdo_pgsql
- apcu
@@ -17,6 +18,7 @@ build:
relationships:

database: "db:postgresql”
redis: "rediscache:redis"
+ rabbitmq: "queue:rabbitmq"

web:
locations:

193

When the RabbitMQ service is installed on a project, you can access its
web management interface by opening the tunnel first:

$ symfony tunnel:open
$ symfony open:remote:rabbitmq

when done
$ symfony tunnel:close

18.13 Running Workers on SymfonyCloud

To consume messages from RabbitMQ, we need to run the
messenger : consume command continuously. On SymfonyCloud, this is the
role of a worker:

--- a/.symfony.cloud.yaml

+++ b/.symfony.cloud.yaml

@@ -46,3 +46,12 @@ hooks:
set -x -e

(>82 symfony-deploy)

+

+workers:

+ messages:

+ commands:

+ start: |

+ set -x -e

+

+ (>82 symfony-deploy)

+ php bin/console messenger:consume async -vv --time-limit 3600

--memory-1imit=128M

Like for the Symfony CLI, SymfonyCloud manages restarts and logs.

To get logs for a worker, use:

$ symfony logs --worker-messages all

194

e Going Further

* SymfonyCasts Messenger tutorial,

* The Enterprise service bus architecture and the CQRS pattern;
* The Symfony Messenger docs;

* RabbitMQ docs.

195

https://symfonycasts.com/screencast/messenger
https://en.wikipedia.org/wiki/Enterprise_service_bus
https://martinfowler.com/bliki/CQRS.html
https://symfony.com/doc/current/messenger.html
https://www.rabbitmq.com/documentation.html

Step 19
Making Decisions with a
Workflow

Having a state for a model is quite common. The comment state is only
determined by the spam checker. What if we add more decision factors?

We might want to let the website admin moderate all comments after the
spam checker. The process would be something along the lines of:

e Start with a submitted state when a comment is submitted by a user;

* Let the spam checker analyze the comment and switch the state to
either potential spam, ham, or rejected;

* If not rejected, wait for the website admin to decide if the comment is
good enough by switching the state to published or rejected.

Implementing this logic is not too complex, but you can imagine that
adding more rules would greatly increase the complexity. Instead of
coding the logic ourselves, we can use the Symfony Workflow
Component:

197

$ symfony composer req workflow

19.1 Describing Workflows

The comment workflow can be described in the config/packages/
workflow.yaml file:

config/packages/workflow.yaml

framework
workflows
comment
type: state machine
audit trail
enabled: "%kernel.debugk"
marking_store
tvpe: 'method’
property: 'state’
supports
App\Entity\Comment
initial marking: submitted
places
submitted
ham
potential_ spam
spam
rejected
published
transitions
accept
from: submitted
to ham
might _be spam
from: submitted
to potential spam
reject spam
from: submitted
to spam
publish
from: potential spam
to published
reject
from: potential spam
to rejected
publish_ham

198

from: ham

to published
reject_ham

from: ham

to rejected

To validate the workflow, generate a visual representation:

$ symfony console workflow:dump comment | dot -Tpng -o workflow.png

potential_spam rejected

might_be_spam

accept

reject_ham |

submitted published

reject_spam

o The dot command is a part of the Graphviz utility.

19.2 Using a Workflow

Replace the current logic in the message handler with the workflow:

--- a/src/MessageHandler/CommentMessageHandler.php
+++ b/src/MessageHandler/CommentMessageHandler.php
@@ -6,19 +6,28 @@ use App\Message\CommentMessage;
use App\Repository\CommentRepository;
use App\SpamChecker;
use Doctrine\ORM\EntityManagerInterface;
+use Psr\lLog\lLoggerInterface;
use Symfony\Component\Messenger\Handler\MessageHandlerInterface;

199

https://www.graphviz.org/

+use Symfony\Component\Messenger\MessageBusInterface;
+use Symfony\Component\Workflow\WorkflowInterface;

class CommentMessageHandler implements MessageHandlerInterface
{
private $spamChecker;
private $entityManager;
private $commentRepository;
+ private $bus;
private $workflow;
+ private $logger;

-+

- public function _ construct(EntityManagerInterface $entityManager,
SpamChecker $spamChecker, CommentRepository $commentRepository)

+ public function _ construct(EntityManagerInterface $entityManager,
SpamChecker $spamChecker, CommentRepository $commentRepository,
MessageBusInterface $bus, WorkflowInterface $commentStateMachine,
LoggerInterface $logger = null)

{
$this->entityManager = $entityManager;
$this->spamChecker = $spamChecker;
$this->commentRepository = $commentRepository;
+ $this->bus = $bus;
+ $this->workflow = $commentStateMachine;
+ $this->logger = $logger;
}

public function _ invoke(CommentMessage $message)
@@ -28,12 +37,21 @@ class CommentMessageHandler implements
MessageHandlerInterface
return;
}

- if (2 === $this->spamChecker->getSpamScore($comment, $message-
>getContext())) {

- $comment->setState('spam');

- } else {

- $comment->setState('published");

: }

+

+ if ($this->workflow->can($comment, ‘accept')) {
+ $score = $this->spamChecker->getSpamScore($comment, $message-
>getContext());

+ $transition = 'accept';

+ if (2 === $score) {

+ $transition = 'reject spam';

+ } elseif (1 === $score) {

+ $transition = 'might be spam’;

+ }

200

-+

$this->workflow->apply($comment, $transition);
$this->entityManager->flush();

+

$this->entityManager->flush();

+ $this->bus->dispatch($message);
+ } elseif ($this->logger) {
+ $this->logger->debug('Dropping comment message', ['comment' =>
$comment->getId(), 'state’ => $comment->getState()]);
+ }
}
}

The new logic reads as follows:

e If the accept transition is available for the comment in the message,
check for spam;

e Depending on the outcome, choose the right transition to apply;

e Call apply() to update the Comment via a call to the setState()
method;

e Call flush() to commit the changes to the database;
* Re-dispatch the message to allow the workflow to transition again.

As we haven’t implemented the admin validation, the next time the
message is consumed, the “Dropping comment message” will be logged.

Let’s implement an auto-validation until the next chapter:

--- a/src/MessageHandler/CommentMessageHandler.php

+++ b/src/MessageHandler/CommentMessageHandler.php

@@ -47,6 +47,9 @@ class CommentMessageHandler implements MessageHandlerInterface
$this->entityManager->flush();

$this->bus->dispatch($message);

+ } elseif ($this->workflow->can($comment, 'publish') || $this->workflow-
>can($comment, 'publish ham')) {

+ $this->workflow->apply($comment, $this->workflow->can($comment,
'publish') ? 'publish' : 'publish ham");

+ $this->entityManager->flush();

} elseif ($this->logger) {
$this->logger->debug('Dropping comment message', ['comment' =>
$comment->getId(), 'state' => $comment->getState()]);

201

Run symfony server:log and add a comment in the frontend to see all
transitions happening one after the other.

Q Going Further

* Workflows and State Machines and when to choose each one;

* The Symfony Workflow docs.

202

https://symfony.com/doc/current/workflow/workflow-and-state-machine.html
https://symfony.com/doc/current/workflow.html

Step 20
Emailing Admins

To ensure high quality feedback, the admin must moderate all comments.
When a comment is in the ham or potential spam state, an email should be
sent to the admin with two links: one to accept the comment and one to
reject it.

First, install the Symfony Mailer component:

$ symfony composer req mailer

20.1 Setting an Email for the Admin

To store the admin email, use a container parameter. For demonstration
purpose, we also allow it to be set via an environment variable (should
not be needed in “real life”). To ease injection in services that need the
admin email, define a container bind setting:

--- a/config/services.yaml
+++ b/config/services.yaml

203

@@ '4)6 +4)7 @@

Put parameters here that don't need to change on each machine where the app
is deployed

https://symfony.com/doc/current/best practices/
configuration.html#application-related-configuration

parameters:
+ default admin email: admin@example.com

services:
default configuration for services in *this* file
@@ -13,6 +14,7 @@ services:
bind:

$photoDir: "%kernel.project dir%/public/uploads/photos”
$akismetKey: "%env(AKISMET KEY)%"

+ $adminEmail:

"%env(string:default:default admin _email:ADMIN EMAIL)%"

makes classes in src/ available to be used as services
this creates a service per class whose id is the fully-qualified class
name

An environment variable might be “processed” before being used. Here,
we are using the default processor to fall back to the value of the
default _admin_email parameter if the ADMIN EMAIL environment variable
does not exist.

20.2 Sending a Notification Email

To send an email, you can choose between several Email class
abstractions; from Message, the lowest level, to NotificationEmail, the
highest one. You will probably use the Email class the most, but
NotificationEmail is the perfect choice for internal emails.

In the message handler, let’s replace the auto-validation logic:

--- a/src/MessageHandler/CommentMessageHandler.php
+++ b/src/MessageHandler/CommentMessageHandler.php
@@ -7,6 +7,8 @@ use App\Repository\CommentRepository;
use App\SpamChecker;
use Doctrine\ORM\EntityManagerInterface;
use Psr\Log\LoggerInterface;
+use Symfony\Bridge\Twig\Mime\NotificationEmail;
+use Symfony\Component\Mailer\MailerInterface;

204

use Symfony\Component\Messenger\Handler\MessageHandlerInterface;
use Symfony\Component\Messenger\MessageBusInterface;
use Symfony\Component\Workflow\WorkflowInterface;
@@ -18,15 +20,19 @@ class CommentMessageHandler implements
MessageHandlerInterface
private $commentRepository;
private $bus;
private $workflow;
+ private $mailer;
+ private $adminEmail;
private $logger;

- public function _ construct(EntityManagerInterface $entityManager,
SpamChecker $spamChecker, CommentRepository $commentRepository,
MessageBusInterface $bus, WorkflowInterface $commentStateMachine,
LoggerInterface $logger = null)
+ public function _ construct(EntityManagerInterface $entityManager,
SpamChecker $spamChecker, CommentRepository $commentRepository,
MessageBusInterface $bus, WorkflowInterface $commentStateMachine,
MailerInterface $mailer, string $adminEmail, LoggerInterface $logger = null)
{
$this->entityManager = $entityManager;
$this->spamChecker = $spamChecker;
$this->commentRepository = $commentRepository;
$this->bus = $bus;
$this->workflow = $commentStateMachine;
+ $this->mailer = $mailer;
+ $this->adminEmail = $adminEmail;
$this->logger = $logger;
}

@@ -51,8 +57,13 @@ class CommentMessageHandler implements
MessageHandlerInterface

$this->bus->dispatch($message);
} elseif ($this->workflow->can($comment, 'publish') || $this->workflow-

>can($comment, 'publish ham')) {
- $this->workflow->apply($comment, $this->workflow->can($comment,
"publish') ? 'publish' : 'publish ham");
- $this->entityManager->flush();
$this->mailer->send((new NotificationEmail())

->subject('New comment posted')

->htmlTemplate('emails/comment notification.html.twig")

->from($this->adminEmail)

->to($this->adminEmail)

->context (['comment' => $comment])

+ + + + + + +

)5
} elseif ($this->logger) {
$this->logger->debug('Dropping comment message', ['comment' =>

205

$comment->getId(), 'state' => $comment->getState()]);
}

The MailerInterface is the main entry point and allows to send() emails.

To send an email, we need a sender (the From/Sender header). Instead of
setting it explicitly on the Email instance, define it globally:

--- a/config/packages/mailer.yaml
+++ b/config/packages/mailer.yaml

@@ -1,3 +1,5 @@

framework:
mailer:
dsn: '%env(MAILER DSN)%'
+ envelope:
+ sender: "%env(string:default:default admin_email:ADMIN EMAIL)%"

20.3 Extending the Notification Email Template

The notification email template inherits from the default notification
email template that comes with Symfony:

templates/emails/comment_notification.html.twig
'@email/default/notification/body.html.twig"

content
Author: comment.author }j

Email: comment.email }i

State: comment.state |

<p>
comment.text
</p>
action
<spacer size="16"></spacer>
<button href="{{ url('review comment’ id: comment.id
">Accept</button>
<button href="{{ url('review comment’ id: comment.id, reject: true
">Reject</button>

206

The template overrides a few blocks to customize the message of the
email and to add some links that allow the admin to accept or reject
a comment. Any route argument that is not a valid route parameter is
added as a query string item (the reject URL looks like /admin/comment/
review/42?reject=true).

The default NotificationEmail template uses Inky instead of HTML to
design emails. It helps create responsive emails that are compatible with
all popular email clients.

For maximum compatibility with email readers, the notification base
layout inlines all stylesheets (via the CSS inliner package) by default.

These two features are part of optional Twig extensions that need to be
installed:

$ symfony composer req twig/cssinliner-extra twig/inky-extra

20.4 Generating Absolute URLs in a Symfony
Command

In emails, generate URLs with url() instead of path() as you need
absolute ones (with scheme and host).

The email is sent from the message handler, in a console context.
Generating absolute URLs in a Web context is easier as we know the
scheme and domain of the current page. This is not the case in a console
context.

Define the domain name and scheme to use explicitly:

--- a/config/services.yaml
+++ b/config/services.yaml
@@ -5,6 +5,11 @@
https://symfony.com/doc/current/best practices/
configuration.htmli#fapplication-related-configuration
parameters:
default _admin _email: admin@example.com
+ default domain: '127.0.0.1'
+ default scheme: "http'

207

https://get.foundation/emails/docs/inky.html

¥
+ router.request context.host:
‘%env(default:default_domain:SYMFONY _DEFAULT_ROUTE_HOST)%'

+ router.request context.scheme:
'%env(default:default scheme:SYMFONY DEFAULT ROUTE_SCHEME)%'

services:
default configuration for services in *this* file

The SYMFONY DEFAULT ROUTE HOST and SYMFONY DEFAULT ROUTE_PORT
environment variables are automatically set locally when using the
symfony CLI and determined based on the configuration on
SymfonyCloud.

20.5 Wiring a Route to a Controller

The review comment route does not exist yet, let’s create an admin
controller to handle it:

src/Controller/AdminController.php
App\Controller

App\Entity\Comment

App\Message\CommentMessage
Doctrine\ORM\EntityManagerInterface
Symfony\Bundle\FrameworkBundle\Controller\AbstractController
Symfony\Component\HttpFoundation\Request
Symfony\Component\HttpFoundation\Response
Symfony\Component\Messenger\MessageBusInterface
Symfony\Component\Routing\Annotation\Route
Symfony\Component\Workflow\Registry

Twig\Environment

AdminController AbstractController
$twig
$entityManager
$bus

__construct(Environment $twig, EntityManagerInterface
$entityManager, MessageBusInterface $bus

$this->twig = $twig

208

$this->entityManager - $entityManager
$this->bus = $bus

/**
* @Route("/admin/comment/review/{id}", name="review comment")
*/
reviewComment(Request $request, Comment $comment, Registry
$registry
$accepted $request->query->get('reject’
$machine = $registry->get($comment
$machine->can($comment, 'publish’
$transition = $accepted 7 'publish' : 'reject’
$machine->can($comment, 'publish ham'
$transition = $accepted ? 'publish ham' : 'reject ham'
Response('Comment already reviewed or not in the right
state.'

$machine->apply($comment, $transition
$this->entityManager->flush

$accepted
$this->bus->dispatch CommentMessage($comment->getId

$this->render('admin/review.html.twig’
"transition’ $transition
'comment’ $comment

The review comment URL starts with /admin/ to protect it with the
firewall defined in a previous step. The admin needs to be authenticated
to access this resource.

Instead of creating a Response instance, we have used render(), a shortcut
method provided by the AbstractController controller base class.

When the review is done, a short template thanks the admin for their hard
work:

templates/admin/review.html.twig

209

'‘base.html.twig'

body
<h2>Comment reviewed, thank you!</h2>

<p>Applied transition: {{ transition }j</p>
<p>New state: {{ comment.state }j</p>

20.6 Using a Mail Catcher

Instead of using a “real” SMTP server or a third-party provider to send
emails, let’s use a mail catcher. A mail catcher provides a SMTP server
that does not deliver the emails, but makes them available through a Web
interface instead:

--- a/docker-compose.yaml
+++ b/docker-compose.yaml
@@ -16,3 +16,7 @@ services:
rabbitmq:
image: rabbitmgq:3.7-management
ports: [5672, 15672]

mailcatcher:
image: schickling/mailcatcher
ports: [1025, 1080]

+ + + +

Shut down and restart the containers to add the mail catcher:

$ docker-compose stop
$ docker-compose up -d

20.7 Accessing the Webmail

You can open the webmail from a terminal:

$ symfony open:local:webmail

Or from the web debug toolbar:

210

Guestbook

* Amsterdam 2019
o Paris 2020

Give your feedback!
Amsterdam 2019

View

Paris 2020

View

Server PHP FPM 7.3.11
Tunnel Down
Docker Compose | Up

Env Vars from Docker
RabbitMQ Ul Up Open
Webmail Up

Blackfire.io Agent Down

200 | @homepage 106 ms 4.0 MB g 176 ‘ anon. W 3ms : Server @5.0.1 X

Submit a comment, you should receive an email in the webmail interface:

0 MailCatcher Search messages... Clear
From To Subject Received
<admin@example.com> <admin@example.com> [LOW] New comment posted Friday, 6 Dec 2019 12:00:35 PM
Received Friday, 6 Dec 2019 12:00:35 PM
From <admin@example.com>
To <admin@example.com>
Subject [LOW] New comment posted
HTML | Plain Text = Source el

New comment posted

Author: Fabien

Email: me@example.com
State: ham

Some comment

Click on the email title on the interface and accept or reject the comment
as you see fit:

211

/

Guestbook

* Amsterdam 2019
o Paris 2020

Comment reviewed, thank you!

Applied transition: reject_ham

New state: rejected

Check the logs with server:1log if that does not work as expected.

20.8 Managing Long-Running Scripts

Having long-running scripts comes with behaviors that you should be
aware of. Unlike the PHP model used for HTTP where each request
starts with a clean state, the message consumer is running continuously
in the background. Each handling of a message inherits the current state,
including the memory cache. To avoid any issues with Doctrine, its entity
managers are automatically cleared after the handling of a message. You
should check if your own services need to do the same or not.

20.9 Sending Emails Asynchronously

The email sent in the message handler might take some time to be sent.
[t might even throw an exception. In case of an exception being thrown
during the handling of a message, it will be retried. But instead of retrying
to consume the comment message, it would be better to actually just retry
sending the email.

We already know how to do that: send the email message on the bus.

212

A MailerInterface instance does the hard work: when a bus is defined, it
dispatches the email messages on it instead of sending them. No changes
are needed in your code.

But right now, the bus is sending the email synchronously as we have
not configured the queue we want to use for emails. Let’s use RabbitMQ
again:

--- a/config/packages/messenger.yaml
+++ b/config/packages/messenger.yaml
@@ -19,3 +19,4 @@ framework:
routing:
Route your messages to the transports
App\Message\CommentMessage: async
+ Symfony\Component\Mailer\Messenger\SendEmailMessage: async

Even if we are using the same transport (RabbitMQ) for comment
messages and email messages, it does not have to be the case. You could
decide to use another transport to manage different message priorities
for instance. Using different transports also gives you the opportunity to
have different worker machines handling different kind of messages. It is
flexible and up to you.

20.10 Testing Emails

There are many ways to test emails.

You can write unit tests if you write a class per email (by extending Email
or TemplatedEmail for instance).

The most common tests you will write though are functional tests that
check that some actions trigger an email, and probably tests about the
content of the emails if they are dynamic.

Symfony comes with assertions that ease such tests:
testMailerAssertions

$client createClient
$client->request('GET", '/’

$this->assertEmailCount(1

213

$event = $this->getMailerEvent(0
$this->assertEmailIsQueued($event

$email = $this->getMailerMessage(0
$this->assertEmailHeaderSame($email, 'To', 'fabien@example.com’
$this->assertEmailTextBodyContains($email, 'Bar’
$this->assertEmailAttachmentCount($email, 1

These assertions work when emails are sent synchronously or
asynchronously.

20.11 Sending Emails on SymfonyCloud

There is no specific configuration for SymfonyCloud. All accounts come
with a SendGrid account that is automatically used to send emails.

You still need to update the SymfonyCloud configuration to include the
xs1 PHP extension needed by Inky:

--- a/.symfony.cloud.yaml
+++ b/.symfony.cloud.yaml
@@ -4,6 +4,7 @@ type: php:7.3

runtime:
extensions:
+ - xsl
- amqp
- redis
- pdo_pgsql

o To be on the safe side, emails are only sent on the master branch by
default. Enable SMTP explicitly on non-master branches if you know
what you are doing:

$ symfony env:setting:set email on

214

e Going Further

» SymfonyCasts Mailer tutorial;

The Inky templating language docs;

The Environment Variable Processors;

The Symfony Framework Mailer documentation;

The SymfonyCloud documentation about Emails.

215

https://symfonycasts.com/screencast/mailer
https://get.foundation/emails/docs/inky.html
https://symfony.com/doc/current/configuration/env_var_processors.html
https://symfony.com/doc/current/mailer.html
https://symfony.com/doc/master/cloud/services/emails.html

Step 21
Caching for Performance

Performance problems might come with popularity. Some typical
examples: missing database indexes or tons of SQL requests per page.
You won’t have any problems with an empty database, but with more
traffic and growing data, it might arise at some point.

21.1 Adding HTTP Cache Headers

Using HTTP caching strategies is a great way to maximize the
performance for end users with little effort. Add a reverse proxy cache in
production to enable caching, and use a CDN to cache on the edge for
even better performance.

Let’s cache the homepage for an hour:

--- a/src/Controller/ConferenceController.php

+++ b/src/Controller/ConferenceController.php

@@ -37,9 +37,12 @@ class ConferenceController extends AbstractController
*/
public function index(ConferenceRepository $conferenceRepository)

{

217

https://en.wikipedia.org/wiki/Content_delivery_network

- return new Response($this->twig->render('conference/index.html.twig", [
+ $response = new Response($this->twig->render('conference/
index.html.twig', [

"conferences' => $conferenceRepository->findAll(),

D);
+ $response->setSharedMaxAge(3600);
+
+ return $response;
}
/**

The setSharedMaxAge () method configures the cache expiration for reverse
proxies. Use setMaxAge() to control the browser cache. Time is expressed
in seconds (1 hour = 60 minutes = 3600 seconds).

Caching the conference page is more challenging as it is more dynamic.
Anyone can add a comment anytime, and nobody wants to wait for an
hour to see it online. In such cases, use the HTTP validation strategy.

21.2 Activating the Symfony HTTP Cache Kernel

To test the HTTP cache strategy, use the Symfony HT TP reverse proxy:

--- a/public/index.php
+++ b/public/index.php
@@ ‘116 +1J7 @@

<?php

use App\Kernel;

+use Symfony\Bundle\FrameworkBundle\HttpCache\HttpCache;
use Symfony\Component\ErrorHandler\Debug;
use Symfony\Component\HttpFoundation\Request;

@@ -21,6 +22,11 @@ if ($trustedHosts = $ SERVER['TRUSTED HOSTS'] ??
$ ENV['TRUSTED HOSTS'] ?? false

}

$kernel = new Kernel($ SERVER['APP_ENV'], (bool) $ SERVER['APP DEBUG']);
+
+if ('dev' === $kernel->getEnvironment()) {
+ $kernel = new HttpCache($kernel);
+}

+

218

$request = Request::createFromGlobals();
$response = $kernel->handle($request);
$response->send();

Besides being a full-fledged HTTP reverse proxy, the Symfony HTTP
reverse proxy (via the HttpCache class) adds some nice debug info as
HTTP headers. That helps greatly in validating the cache headers we have
set.

Check it on the homepage:

$ curl -s -I -X GET https://127.0.0.1:8000/

HTTP/2 200

age: 0

cache-control: public, s-maxage=3600

content-type: text/html; charset=UTF-8

date: Mon, 28 Oct 2019 08:11:57 GMT

x-content-digest:
en63cef7045fe418859d73668c2703fb1324fcc0d35b21d95369a9edlacas8e73e
x-debug-token: 9eb25a

x-debug-token-1link: https://127.0.0.1:8000/_ profiler/9eb25a
x-robots-tag: noindex

x-symfony-cache: GET /: miss, store

content-length: 50978

For the very first request, the cache server tells you that it was a miss and
that it performed a store to cache the response. Check the cache-control
header to see the configured cache strategy.

For subsequent requests, the response is cached (the age has also been
updated):

HTTP/2 200

age: 143

cache-control: public, s-maxage=3600

content-type: text/html; charset=UTF-8

date: Mon, 28 Oct 2019 08:11:57 GMT

x-content-digest:
en63cef7045fe418859d73668c2703fb1324fcc0d35b21d95369a9edlacas8e73e
x-debug-token: 9eb25a

x-debug-token-link: https://127.0.0.1:8000/_ profiler/9eb25a
x-robots-tag: noindex

x-symfony-cache: GET /: fresh

219

content-length: 50978

21.3 Avoiding SQL Requests with ESI

The TwigEventSubscriber listener injects a global variable in Twig with all
conference objects. It does so for every single page of the website. It is
probably a great target for optimization.

You won’t add new conferences every day, so the code is querying the
exact same data from the database over and over again.

We might want to cache the conference names and slugs with the
Symfony Cache, but whenever possible I like to rely on the HTTP caching
infrastructure.

When you want to cache a fragment of a page, move it outside of the
current HTTP request by creating a sub-request. ESI is a perfect match for
this use case. An ESl is a way to embed the result of an HTTP request into
another.

Create a controller that only returns the HTML fragment that displays the
conferences:

--- a/src/Controller/ConferenceController.php

+++ b/src/Controller/ConferenceController.php

@@ -45,6 +45,16 @@ class ConferenceController extends AbstractController
return $response;

}
+ /**
+ * @Route("/conference header", name="conference header")
+ */
+ public function conferenceHeader(ConferenceRepository
$conferenceRepository)
+ A
+ return new Response($this->twig->render('conference/header.html.twig",
[
+ "conferences' => $conferenceRepository->findAll(),
+ D);
+)
+

/**

220

* @Route("/conference/{slug}", name="conference")
*/

Create the corresponding template:

templates/conference/header.html.twig

conference conferences

conference |i</a»

Hit /conference_header to check that everything works fine.

Time to reveal the trick! Update the Twig layout to call the controller we
have just created:

--- a/templates/base.html.twig
+++ b/templates/base.html.twig
@@ '8111 +8)7 @@
<body>
<header>
<hl>Guestbook</h1>
-
- {% for conference in conferences %}
- <a href="{{ path('conference', { slug: conference.slug })
}}">{{ conference }}</1i>
- {% endfor %}
-
+ {{ render(path('conference header')) }}
<hr />
</header>
{% block body %}{% endblock %}

And voila. Refresh the page and the website is still displaying the same.

Use the “Request / Response” Symfony profiler panel to learn more
about the main request and its sub-requests.

Now, every time you hit a page in the browser, two HTTP requests are
executed, one for the header and one for the main page. You have made
performance worse. Congratulations!

221

The conference header HTTP call is currently done internally by
Symfony, so no HTTP round-trip is involved. This also means that there
is no way to benefit from HTTP cache headers.

Convert the call to a “real” HTTP one by using an ESI.

First, enable ESI support:

--- a/config/packages/framework.yaml
+++ b/config/packages/framework.yaml
@@ -10,7 +10,7 @@ framework:

cookie secure: auto

cookie samesite: lax

- #esi: true
+ esi: true
#fragments: true
php_errors:
log: true

Then, use render_esi instead of render:

--- a/templates/base.html.twig
+++ b/templates/base.html.twig

@@ -8,7 +8,7 @@

<body>
<header>
<hl>Guestbook</h1>
{{ render(path('conference header')) }}
+ {{ render esi(path('conference header')) }}
<hr />
</header>

{% block body %}{% endblock %}

If Symfony detects a reverse proxy that knows how to deal with ESIs,
it enables support automatically (if not, it falls back to render the sub-
request synchronously).

As the Symfony reverse proxy does support ESIs, let’s check its logs
(remove the cache first - see “Purging” below):

$ curl -s -I -X GET https://127.0.0.1:8000/

HTTP/2 200
age: 0

222

cache-control: must-revalidate, no-cache, private

content-type: text/html; charset=UTF-8

date: Mon, 28 Oct 2019 08:20:05 GMT

expires: Mon, 28 Oct 2019 08:20:05 GMT

x-content-digest:
en4dd846a34dcd757eb9fd27743220effd28c00e4117bed41at7185700eb07f2c
x-debug-token: 719a83

x-debug-token-link: https://127.0.0.1:8000/ profiler/719a83
x-robots-tag: noindex

x-symfony-cache: GET /: miss, store; GET /conference header: miss
content-length: 50978

Refresh a few times: the / response is cached and the /conference_header
one is not. We have achieved something great: having the whole page in
the cache but still having one part dynamic.

This is not what we want though. Cache the header page for an hour,
independently of everything else:

--- a/src/Controller/ConferenceController.php
+++ b/src/Controller/ConferenceController.php
@@ -50,9 +50,12 @@ class ConferenceController extends AbstractController
*/
public function conferenceHeader(ConferenceRepository
$conferenceRepository)

- return new Response($this->twig->render('conference/header.html.twig',

[

+ $response = new Response($this->twig->render('conference/
header.html.twig', [
"conferences' => $conferenceRepository->findAll(),

D);
+ $response->setSharedMaxAge(3600);
+
+ return $response;
}
/**

Cache is now enabled for both requests:

$ curl -s -I -X GET https://127.0.0.1:8000/

HTTP/2 200
age: 613

223

cache-control: public, s-maxage=3600

content-type: text/html; charset=UTF-8

date: Mon, 28 Oct 2019 07:31:24 CMT

x-content-digest:
en15216b0803c7851d3d07071473c9f6a3a3360c6a83ccb0e550b35d5bc484bbd2
x-debug-token: cfb0e9

x-debug-token-link: https://127.0.0.1:8000/_profiler/cfb0e9
x-robots-tag: noindex

x-symfony-cache: GET /: fresh; GET /conference header: fresh
content-length: 50978

The x-symfony-cache header contains two elements: the main / request
and a sub-request (the conference header ESI). Both are in the cache
(fresh).

The cache strategy can be different from the main page and its ESIs. If we
have an “about” page, we might want to store it for a week in the cache,
and still have the header be updated every hour.

Remove the listener as we don’t need it anymore:

$ rm src/EventSubscriber/TwigEventSubscriber.php

21.4 Purging the HTTP Cache for Testing

Testing the website in a browser or via automated tests becomes a little
bit more difficult with a caching layer.

You can manually remove all the HTTP cache by removing the var/cache/

dev/http cache/ directory:

$ rm -rf var/cache/dev/http cache/

This strategy does not work well if you only want to invalidate some
URLs or if you want to integrate cache invalidation in your functional
tests. Let’s add a small, admin only, HTTP endpoint to invalidate some
URLs:

--- a/src/Controller/AdminController.php
+++ b/src/Controller/AdminController.php

224

@@ -6,8 +6,10 @@ use App\Entity\Comment;
use App\Message\CommentMessage;
use Doctrine\ORM\EntityManagerInterface;
use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;
+use Symfony\Bundle\FrameworkBundle\HttpCache\HttpCache;
use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpFoundation\Response;
+use Symfony\Component\HttpKernel\KernelInterface;
use Symfony\Component\Messenger\MessageBusInterface;
use Symfony\Component\Routing\Annotation\Route;
use Symfony\Component\Workflow\Registry;
@@ -54,4 +56,19 @@ class AdminController extends AbstractController
"comment' => $comment,

D;
}
+
+ /**
+ * @Route("/admin/http-cache/{uri<.*>}", methods={"PURGE"})
+ */
+ public function purgeHttpCache(KernelInterface $kernel, Request $request,
string $uri)
+ A
+ if ('prod' === $kernel->getEnvironment()) {
+ return new Response('KO', 400);
+ }
+
+ $store = (new class($kernel) extends HttpCache {})->getStore();
+ $store->purge($request->getSchemeAndHttpHost().' /" .$uri);
+
+ return new Response('Done');
+)
}

The new controller has been restricted to the PURGE HTTP method. This
method is not in the HTTP standard, but it is widely used to invalidate
caches.

By default, route parameters cannot contain / as it separates URL
segments. You can override this restriction for the last route parameter,
like uri, by setting your own requirement pattern (.*).

The way we get the HttpCache instance can also look a bit strange; we are
using an anonymous class as accessing the “real” one is not possible. The
HttpCache instance wraps the real kernel, which is unaware of the cache
layer as it should be.

Invalidate the homepage and the conference header via the following

225

cURL calls:

$ curl -I -X PURGE -u admin:admin ~symfony var:export
SYMFONY_DEFAULT ROUTE_URL" /admin/http-cache/

$ curl -I -X PURGE -u admin:admin ~symfony var:export
SYMFONY_DEFAULT_ROUTE_URL" /admin/http-cache/conference_header

The symfony var:export SYMFONY DEFAULT ROUTE URL sub-command
returns the current URL of the local web server.

The controller does not have a route name as it will never be
referenced in the code.

21.5 Grouping similar Routes with a Prefix

The two routes in the admin controller have the same /admin prefix.
Instead of repeating it on all routes, refactor the routes to configure the
prefix on the class itself:

--- a/src/Controller/AdminController.php

+++ b/src/Controller/AdminController.php

@@ -15,6 +15,9 @@ use Symfony\Component\Routing\Annotation\Route;
use Symfony\Component\Workflow\Registry;
use Twig\Environment;

+/ %%
+ * @Route("/admin")
+ ¥/
class AdminController extends AbstractController

{
private $twig;
@@ -29,7 +32,7 @@ class AdminController extends AbstractController
}

/**
- * @Route("/admin/comment/review/{id}", name="review comment™)
+ * @Route("/comment/review/{id}", name="review comment")

*/

public function reviewComment(Request $request, Comment $comment, Registry
$registry)

@@ -58,7 +61,7 @@ class AdminController extends AbstractController
}

226

Vo

- * @Route("/admin/http-cache/{uri<.*>}", methods={"PURGE"})
+ * @Route("/http-cache/{uri<.*>}", methods={"PURGE"})

*/

public function flushHttpCache(KernelInterface $kernel, Request $request,
string $uri)

{

21.6 Caching CPU/Memory Intensive Operations

We don’t have CPU or memory-intensive algorithms on the website. To
talk about local caches, let’s create a command that displays the current
step we are working on (to be more precise, the Git tag name attached to
the current Git commit).

The Symfony Process component allows you to run a command and get
the result back (standard and error output); install it:

$ symfony composer req process

Implement the command:

src/Command/StepInfoCommand.php
App\Command

Symfony\Component\Console\Command\Command
Symfony\Component\Console\Input\InputInterface
Symfony\Component\Console\Output\OutputInterface
Symfony\Component\Process\Process

StepInfoCommand Command
$defaultName = 'app:step:info’

execute(InputInterface $input, OutputInterface $output
int

$process Process(['git"', 'tag', '-1', '--points-at', 'HEAD'
$process->mustRun

$output->write($process->getOutput

227

o You could have used make:command to create the command:

$ symfony console make:command app:step:info

What if we want to cache the output for a few minutes? Use the Symfony
Cache:

$ symfony composer req cache

And wrap the code with the cache logic:

--- a/src/Command/StepInfoCommand.php

+++ b/src/Command/StepInfoCommand.php

@@ -6,16 +6,31 @@ use Symfony\Component\Console\Command\Command;
use Symfony\Component\Console\Input\InputInterface;

use Symfony\Component\Console\Output\OutputInterface;

use Symfony\Component\Process\Process;

+use Symfony\Contracts\Cache\CacheInterface;

class StepInfoCommand extends Command

{
protected static $defaultName = "app:step:info’;

+ private $cache;
+
+ public function _ construct(CacheInterface $cache)
+ q
+ $this->cache = $cache;
+
+ parent:: construct();
+)
+

protected function execute(InputInterface $input, OutputInterface
$output): int

{
- $process = new Process(['git', 'tag', '-1', '--points-at', 'HEAD']);
- $process->mustRun();
- $output->write($process->getOutput());
+ $step = $this->cache->get('app.current_step', function ($item) {
+ $process = new Process(['git', 'tag', '-1', '--points-at’,

228

"HEAD']);
$process->mustRun();
$item->expiresAfter(30);

return $process->getOutput();

1)s
$output->writeln($step);

+ + 4+ + + +

return 0;

}

The process is now only called if the app.current_step item is not in the
cache.

21.7 Profiling and Comparing Performance

Never add cache blindly. Keep in mind that adding some cache adds a
layer of complexity. And as we are all very bad at guessing what will be
fast and what is slow, you might end up in a situation where the cache
makes your application slower.

Always measure the impact of adding a cache with a profiler tool like
Blackfire.

Refer to the step about “Performance” to learn more about how you can
use Blackfire to test your code before deploying.

21.8 Configuring a Reverse Proxy Cache on Production

Don’t use the Symfony reverse proxy in production. Always prefer a
reverse proxy like Varnish on your infrastructure or a commercial CDN.

Add Varnish to the SymfonyCloud services:

--- a/.symfony/services.yaml
+++ b/.symfony/services.yaml
@@ -7,3 +7,12 @@ queue:
type: rabbitmq:3.5
disk: 1024
size: S

229

https://blackfire.io/

+
+varnish:
type: varnish:6.0
relationships:
application: 'app:http'
configuration:
vcl: linclude
type: string
path: config.vcl

+ + + + + + +

Use Varnish as the main entry point in the routes:

--- a/.symfony/routes.yaml
+++ b/.symfony/routes.yaml
@@ -1,2 +1,2 @@

-"https://{all}/": { type: upstream, upstream: "app:http" }
+"https://{all}/": { type: upstream, upstream: "varnish:http", cache: {
enabled: false } }

"http://{all}/": { type: redirect, to: "https://{all}/" }

Finally, create a config.vcl file to configure Varnish:

.symfony/config.vcl

vcl recv
req.backend hint = application.backend

21.9 Enabling ESI Support on Varnish

ESI support on Varnish should be enabled explicitly for each request. To
make it universal, Symfony uses the standard Surrogate-Capability and
Surrogate-Control headers to negotiate ESI support:

.symfony/config.vcl

vcl recv
req.backend hint = application.backend
req.http.Surrogate-Capability = "abc=ESI/1.0"

vcl backend response
beresp.http.Surrogate-Control ~ "ESI/1.0"

230

beresp.http.Surrogate-Control
beresp.do_esi = true

21.10 Purging the Varnish Cache

Invalidating the cache in production should probably never be needed,
except for emergency purposes and maybe on non-master branches. If
you need to purge the cache often, it probably means that the caching
strategy should be tweaked (by lowering the TTL or by using a validation
strategy instead of an expiration one).

Anyway, let’s see how to configure Varnish for cache invalidation:

--- a/.symfony/config.vcl
+++ b/.symfony/config.vcl
@@ -1,6 +1,13 @@
sub vcl recv {
set req.backend hint = application.backend();
set req.http.Surrogate-Capability = "abc=ESI/1.0";

+
+ if (req.method == "PURGE") {
+ if (req.http.x-purge-token != "PURGE_NOW") {
+ return(synth(405));
+ }
+ return (purge);
+)
}

sub vcl backend response {

In real life, you would probably restrict by IPs instead like described in
the Varnish docs.

Purge some URLs now:

$ curl -X PURGE -H 'x-purge-token PURGE NOW' "~symfony env:urls --first’
$ curl -X PURGE -H 'x-purge-token PURGE NOW' "symfony env:urls --
first conference header

The URLs looks a bit strange because the URLs returned by env:urls

231

https://varnish-cache.org/docs/trunk/users-guide/purging.html

already ends with /.

Q Going Further

* Cloudflare, the global cloud platform;
Varnish HTTP Cache docs;

ESI specification and ESI developer resources;
HTTP cache validation model,
HTTP Cache in SymfonyCloud.

232

https://www.cloudflare.com/
https://varnish-cache.org/docs/index.html
https://www.w3.org/TR/esi-lang
https://www.akamai.com/us/en/support/esi.jsp
https://symfony.com/doc/current/http_cache/validation.html
https://symfony.com/doc/master/cloud/cookbooks/cache.html

Step 22
Styling the User Interface with
Webpack

We have spent no time on the design of the user interface. To style like
a pro, we will use a modern stack, based on Webpack. And to add a
Symfony touch and ease its integration with the application, let’s install
Webpack Encore:

$ symfony composer req encore

A full Webpack environment has been created for you: package.json
and webpack.config.js have been generated and contain good default
configuration. Open webpack.config. js, it uses the Encore abstraction to
configure Webpack.

The package. json file defines some nice commands that we will use all the
time.

The assets directory contains the main entry points for the project assets:
css/app.css and js/app.js.

233

https://webpack.js.org/

22.1 Using Sass

Instead of using plain CSS, let’s switch to Sass:

$ mv assets/css/app.css assets/css/app.scss

--- a/assets/js/app.js
+++ b/assets/js/app.js
@@ -6,7 +6,7 @@

*/

// any CSS you import will output into a single css file (app.css in this case)
-import '../css/app.css’;
+import '../css/app.scss';

// Need jQuery? Install it with "yarn add jquery", then uncomment to import it.
// import $ from 'jquery';

Install the Sass loader:

$ yarn add node-sass "sass-loader@"7.0.1" --dev

And enable the Sass loader in webpack:

--- a/webpack.config.js
+++ b/webpack.config.js
@@ -54,7 +54,7 @@ Encore

1)

// enables Sass/SCSS support
- // .enableSassLoader()
+ .enableSassLoader()

// uncomment if you use TypeScript
//.enableTypeScriptLoader()

How did I know which packages to install? If we had tried to build our
assets without them, Encore would have given us a nice error message
suggesting the yarn add command needed to install dependencies to load
.scss files.

234

https://sass-lang.com/

22.2 Leveraging Bootstrap

To start with good defaults and build a responsive website, a CSS
framework like Bootstrap can go a long way. Install it as a package:

$ yarn add bootstrap jquery popper.js bs-custom-file-input --dev

Require Bootstrap in the CSS file (we have also cleaned up the file):

--- a/assets/css/app.scss

+++ b/assets/css/app.scss

@@ -1,3 +1 @@

-body {

- background-color: lightgray;
-}

+@import '~bootstrap/scss/bootstrap’;

Do the same for the]S file:

--- a/assets/js/app.js
+++ b/assets/js/app.js
@@ -7,8 +7,7 @@

// any CSS you import will output into a single css file (app.css in this case)
import '../css/app.scss’;

+import 'bootstrap';

+import bsCustomFileInput from 'bs-custom-file-input';

-// Need jQuery? Install it with "yarn add jquery", then uncomment to import it.
-// import $ from 'jquery';

-console.log('Hello Webpack Encore! Edit me in assets/js/app.js');
+bsCustomFileInput.init();

The Symfony form system supports Bootstrap natively with a special
theme, enable it:

config/packages/twig.yaml

twig
form_themes: ['bootstrap 4 layout.html.twig'

235

https://getbootstrap.com/

22.3 Styling the HTML

We are now ready to style the application. Download and expand the
archive at the root of the project:

$ php -r "copy('https://symfony.com/uploads/assets/guestbook.zip",
'guestbook.zip');"

$ unzip -o guestbook.zip

$ rm guestbook.zip

Have a look at the templates, you might learn a trick or two about Twig.

22.4 Building Assets

One major change when using Webpack is that CSS and]S files are not
usable directly by the application. They need to be “compiled” first.

In development, compiling the assets can be done via the encore dev
command:

$ symfony run yarn encore dev

Instead of executing the command each time there is a change, send it to
the background and let it watch]S and CSS changes:

$ symfony run -d yarn encore dev --watch

Take the time to discover the visual changes. Have a look at the new
design in a browser.

236

I&| Conference Guestbook

AMSTERDAM 2019 PARIS 2020

Give your feedback!

Amsterdam Paris 2020

2019 View
m

200 @ @homepage n/ams 8.0MB g 176 ‘ anon. Server @5.0.1 X

/conference/amsterdam-2019

I5| Conference Guestbook

AMSTERDAM 2019 PARIS 2020

Amsterdam 2019 Conference

Lucas

Add your own
feedback

Your name

That was an amazing conference!

Text

Fabien

200 | @conference njams 60MB [E] 1 £ 185 K5 & anon.) oms =] 4 Ed sever @ 501 X

The generated login form is now styled as well as the Maker bundle uses
Bootstrap CSS classes by default:

237

/login

I&| Conference Guestbook

AMSTERDAM 2019 PARIS 2020

Please sign in

Username

Password

200 | @app_login n/ams 2.0MB g 4 ‘ anon. W 0ms Server @ 501 X

For production, SymfonyCloud automatically detects that you are using
Encore and compiles the assets for you during the build phase.

e Going Further

* Webpack docs;
* Symfony Webpack Encore docs;
» SymfonyCasts Webpack Encore tutorial.

238

https://webpack.js.org/concepts/
https://symfony.com/doc/current/frontend.html
https://symfonycasts.com/screencast/webpack-encore

Step 23
Resizing Images

On the conference page design, photos are constrained to a maximum
size of 200 by 150 pixels. What about optimizing the images and reducing
their size if the uploaded original is larger than the limits?

That is a perfect job that can be added to the comment workflow,
probably just after the comment is validated and just before it is

published.

Let’s add a new ready state and an optimize transition:

--- a/config/packages/workflow.yaml
+++ b/config/packages/workflow.yaml
@@ -16,6 +16,7 @@ framework:
- potential spam
- spam
- rejected
+ - ready
- published
transitions:
accept:
@@ -29,13 +30,16 @@ framework:
to: spam
publish:
from: potential spam

239

- to: published
+ to: ready
reject:
from: potential spam
to: rejected
publish_ham:
from: ham
- to: published
+ to: ready
reject_ham:
from: ham
to: rejected
+ optimize:
from: ready
+ to: published

-+

Generate a visual representation of the new workflow configuration to
validate that it describes what we want:

$ symfony console workflow:dump comment | dot -Tpng -o workflow.png

potential_spam

rejected

optimize

reject_ham I

accept published

submitted

reject_spam

23.1 Optimizing Images with Imagine

Image optimizations will be done thanks to GD (check that your local
PHP installation has the GD extension enabled) and Imagine:

$ symfony composer req imagine/imagine

240

https://libgd.github.io/
https://github.com/avalanche123/Imagine

Resizing an image can be done via the following service class:

src/TmageOptimizer.php
App

Imagine\Gd\Imagine
Imagine\Image\Box

ImageOptimizer

MAX_WIDTH = 200
MAX HEIGHT = 150

$imagine
__construct

$this->imagine Imagine

resize(string $filename): void
$iwidth, $iheight getimagesize($filename

$ratio = $iwidth / $iheight
$width = self::MAX WIDTH
$height - self::MAX HEIGHT

$width / $height > $ratio

$width = $height * $ratio

$height = $width / $ratio

$photo = $this->imagine->open($filename
$photo->resize Box($width, $height save($filename

After optimizing the photo, we store the new file in place of the original
one. You might want to keep the original image around though.

23.2 Adding a new Step in the Workflow

Modify the workflow to handle the new state:

241

--- a/src/MessageHandler/CommentMessageHandler.php
+++ b/src/MessageHandler/CommentMessageHandler.php

@@ ‘216 +217 @@
namespace App\MessageHandler;

+use App\ImageOptimizer;
use App\Message\CommentMessage;
use App\Repository\CommentRepository;
use App\SpamChecker;
@@ -21,10 +22,12 @@ class CommentMessageHandler implements
MessageHandlerInterface
private $bus;
private $workflow;
private $mailer;
+ private $imageOptimizer;
private $adminEmail;
+ private $photoDir;
private $logger;

public function _ construct(EntityManagerInterface $entityManager,
SpamChecker $spamChecker, CommentRepository $commentRepository,
MessageBusInterface $bus, WorkflowInterface $commentStateMachine,
MailerInterface $mailer, string $adminEmail, LoggerInterface $logger = null)
+ public function _ construct(EntityManagerInterface $entityManager,
SpamChecker $spamChecker, CommentRepository $commentRepository,
MessageBusInterface $bus, WorkflowInterface $commentStateMachine,
MailerInterface $mailer, ImageOptimizer $imageOptimizer, string $adminEmail,
string $photoDir, LoggerInterface $logger = null)
{
$this->entityManager = $entityManager;
$this->spamChecker = $spamChecker;
@@ -32,7 +35,9 @@ class CommentMessageHandler implements MessageHandlerInterface
$this->bus = $bus;
$this->workflow = $commentStateMachine;
$this->mailer = $mailer;

+ $this->imageOptimizer = $imageOptimizer;
$this->adminEmail = $adminEmail;
+ $this->photoDir = $photoDir;

$this->logger = $logger;
}

@@ -63,6 +68,12 @@ class CommentMessageHandler implements
MessageHandlerInterface
->to($this->adminEmail)
->context(['comment' => $comment])
)5
+ } elseif ($this->workflow->can($comment, 'optimize')) {
if ($comment->getPhotoFilename()) {

-+

242

+ $this->imageOptimizer->resize($this->photoDir."/".$comment-
>getPhotoFilename());
+
+ $this->workflow->apply($comment, 'optimize');
+ $this->entityManager->flush();
} elseif ($this->logger) {

$this->logger->debug('Dropping comment message', ['comment' =>

$comment->getId(), 'state’ => $comment->getState()]);

Note that $photoDir is automatically injected as we defined a container
bind on this variable name in a previous step:

config/packages/services.yaml

services
_defaults
bind
$photoDir: "%kernel.project dir%/public/uploads/photos”

23.3 Storing Uploaded Data in Production

We have already defined a special read-write directory for uploaded files
in .symfony.cloud.yaml. But the mount is local. If we want the web
container and the message consumer worker to be able to access the same
mount, we need to create a file service:

--- a/.symfony/services.yaml
+++ b/.symfony/services.yaml
@@ -16,3 +16,7 @@ varnish:
vcl: linclude
type: string
path: config.vcl
+
+files:
+ type: network-storage:1.0
+ disk: 256

Use it for the photos upload directory:

--- a/.symfony.cloud.yaml

243

+++ b/.symfony.cloud.yaml
@@ -29,7 +29,7 @@ disk: 512

mounts:
"/var": { source: local, source path: var }
- "/public/uploads": { source: local, source_ path: uploads }

+ "/public/uploads": { source: service, service: files, source path: uploads
}
hooks :
build: |

This should be enough to make the feature work in production.

244

Step 24
Running Crons

Crons are useful to do maintenance tasks. Unlike workers, they run on a
schedule for a short period of time.

24.1 Cleaning up Comments

Comments marked as spam or rejected by the admin are kept in the
database as the admin might want to inspect them for a little while. But
they should probably be removed after some time. Keeping them around
for a week after their creation is probably enough.

Create some utility methods in the comment repository to find rejected
comments, count them, and delete them:

--- a/src/Repository/CommentRepository.php

+++ b/src/Repository/CommentRepository.php

@@ -6,6 +6,7 @@ use App\Entity\Comment;
use App\Entity\Conference;

use Doctrine\Bundle\DoctrineBundle\Repository\ServiceEntityRepository;
use Doctrine\Common\Persistence\ManagerRegistry;

+use Doctrine\ORM\QueryBuilder;

245

use Doctrine\ORM\Tools\Pagination\Paginator;

/**

@@ -16,12 +17,37 @@ use Doctrine\ORM\Tools\Pagination\Paginator;

*/

class CommentRepository extends ServiceEntityRepository

{

+ private const DAYS BEFORE_REJECTED REMOVAL = 7;

+

public

public
{

const PAGINATOR PER PAGE = 2;

function _ construct(ManagerRegistry $registry)

parent:: construct($registry, Comment::class);

}

public
{

+ + + +

public
{

+ + + + +

>execute();

}

{

ays'),

+ + 4+ + + F o+ F o+ + o+

}

public
Paginator

{

246

function countOldRejected(): int

return $this->getOldRejectedQueryBuilder()->select('COUNT(c.id)")-
>getQuery()-

>getSingleScalarResult();

function deleteOldRejected(): int

return $this->getOldRejectedQueryBuilder()->delete()->getQuery()-

private function getOldRejectedQueryBuilder(): QueryBuilder

return $this->createQueryBuilder('c")

->andhWhere('c.state = :state_rejected or c.state = :state_spam')
->andWhere('c.createdAt < :date')
->setParameters(|[

'state_rejected' => 'rejected',

'state_spam' => 'spam’',

"date' => new \DateTime(-self::DAYS BEFORE_REJECTED REMOVAL.'

function getCommentPaginator(Conference $conference, int $offset):

For more complex queries, it is sometimes useful to have a look at the
generated SQL statements (they can be found in the logs and in the
profiler for Web requests).

24.2 Using Class Constants, Container Parameters, and
Environment Variables

7 days? We could have chosen another number, maybe 10 or 20. This
number might evolve over time. We have decided to store it as a constant
on the class, but we might have stored it as a parameter in the container,
or we might have even defined it as an environment variable.

Here are some rules of thumb to decide which abstraction to use:

e If the value is sensitive (passwords, API tokens, ...), use the Symfony
secret storage or a Vault;

e If the value is dynamic and you should be able to change it without
re-deploying, use an environment variable;

e If the value can be different between environments, use a container
parameter;

 For everything else, store the value in code, like in a class constant.

24.3 Creating a CLI Command

Removing the old comments is the perfect task for a cron job. It should be
done on a regular basis, and a little delay does not have any major impact.

Create a CLI command named app:comment:cleanup by creating a src/
Command/CommentCleanupCommand. php file:

src/Command/CommentCleanupCommand.php

App\Command

App\Repository\CommentRepository

247

Symfony\Component\Console\Command\Command
Symfony\Component\Console\Input\InputInterface
Symfony\Component\Console\Input\InputOption
Symfony\Component\Console\Output\OutputInterface
Symfony\Component\Console\Style\SymfonyStyle
CommentCleanupCommand Command
$commentRepository
$defaultName = 'app:comment:cleanup’

__construct(CommentRepository $commentRepository

$this->commentRepository = $commentRepository

__construct
configure
$this
setDescription('Deletes rejected and spam comments from the
database’
addOption('dry-run' InputOption: :VALUE NONE, 'Dry run'
execute(InputInterface $input, OutputInterface $output
int
$io SymfonyStyle($input, $output

$input->getOption('dry-run'
$io->note('Dry mode enabled'

$count = $this->commentRepository->countOldRejected

$count = $this->commentRepository->deleteOldRejected

$io->success(sprintf('Deleted "%d" old rejected/spam comments.’
$count

All application commands are registered alongside Symfony built-in ones

248

and they are all accessible via symfony console. As the number of available
commands can be large, you should namespace them. By convention, the
application commands should be stored under the app namespace. Add
any number of sub-namespaces by separating them by a colon (:).

A command gets the input (arguments and options passed to the
command) and you can use the output to write to the console.

Clean up the database by running the command:

$ symfony console app:comment:cleanup

24.4 Setting up a Cron on SymfonyCloud

One of the nice thing about SymfonyCloud is that most of the
configuration is stored in one file: .symfony.cloud.yaml. The web
container, the workers, and the cron jobs are described together to help
maintenance:

--- a/.symfony.cloud.yaml
+++ b/.symfony.cloud.yaml
@@ -43,6 +43,15 @@ hooks:

(>82 symfony-deploy)

+Crons:
+ comment_cleanup:
+ # Cleanup every night at 11.50 pm (UTC).
+ spec: '50 23 * * *!
+ cmd: |
+ if ["$SYMFONY BRANCH" = "master"]; then
+ croncape symfony console app:comment:cleanup
+ fi
+
workers:

messages:

commands:

The crons section defines all cron jobs. Each cron runs according to a spec
schedule.

The croncape utility monitors the execution of the command and sends
an email to the addresses defined in the MAILTO environment variable if the

249

command returns any exit code different than 0.

Configure the MAILTO environment variable:

$ symfony var:set MAILTO-ops@example.com

You can force a cron to run from your local machine:

$ symfony cron comment cleanup

Note that crons are set up on all SymfonyCloud branches. If you don’t
want to run some on non-production environments, check the
$SYMFONY_BRANCH environment variable:

"$SYMFONY_BRANCH" = "master”
croncape symfony app:invoices:send

e Going Further

Cron/crontab syntax;

Croncape repository;

Symfony Console commands;

The Symfony Console Cheat Sheet.

250

https://en.wikipedia.org/wiki/Cron
https://github.com/symfonycorp/croncape
https://symfony.com/doc/current/console.html
https://github.com/andreia/symfony-cheat-sheets/blob/master/Symfony4/console_en_42.pdf

Step 25

Notifying by all Means

The Guestbook application gathers feedback about the conferences. But
we are not great at giving feedback to our users.

As comments are moderated, they probably don’t understand why their
comments are not published instantly. They might even re-submit them
thinking there was some technical problems. Giving them feedback after
posting a comment would be great.

Also, we should probably ping them when their comment has been
published. We ask for their email, so we’d better use it.

There are many ways to notify users. Email is the first medium that you
might think about, but notifications in the web application is another
one. We could even think about sending SMS messages, posting a
message on Slack or Telegram. There are many options.

The Symfony Notifier Component implements many notification
strategies:

$ symfony composer req notifier

251

25.1 Sending Web Application Notifications in the
Browser

As a first step, let’s notify the users that comments are moderated directly
in the browser after their submission:

--- a/src/Controller/ConferenceController.php
+++ b/src/Controller/ConferenceController.php
@@ -14,6 +14,8 @@ use Symfony\Component\HttpFoundation\File\Exception\
FileException;
use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpFoundation\Response;
use Symfony\Component\Messenger\MessageBusInterface;
+use Symfony\Component\Notifier\Notification\Notification;
+use Symfony\Component\Notifier\NotifierInterface;
use Symfony\Component\Routing\Annotation\Route;
use Symfony\Component\Workflow\Registry;
use Twig\Environment;
@@ -60,7 +62,7 @@ class ConferenceController extends AbstractController
/**
* @Route("/conference/{slug}", name="conference")
*/
- public function show(Request $request, Conference $conference,
CommentRepository $commentRepository, string $photoDir)
+ public function show(Request $request, Conference $conference,
CommentRepository $commentRepository, NotifierInterface $notifier, string
$photoDir)
{
$comment = new Comment();
$form = $this->createForm(CommentFormType::class, $comment);
@@ -90,9 +92,15 @@ class ConferenceController extends AbstractController

$this->bus->dispatch(new CommentMessage($comment->getId(),

$context));
+ $notifier->send(new Notification('Thank you for the feedback; your
comment will be posted after moderation.', ['browser']));
+
return $this->redirectToRoute('conference', ['slug' => $conference-

>getslug()]);

}
+ if ($form->isSubmitted()) {
+ $notifier->send(new Notification('Can you check your submission?
There are some problems with it.', ['browser']));
+ }
+

252

$offset = max(0, $request->query->getInt('offset’, 0));
$paginator = $commentRepository->getCommentPaginator($conference,
$offset);

The notifier sends a notification to recipients via a channel.
A notification has a subject, an optional content, and an importance.

A notification is sent on one or many channels depending on its
importance. You can send urgent notifications by SMS and regular ones
by email for instance.

For browser notifications, we don’t have recipients.

The browser notification uses flash messages via the notification section.
We need to display them by updating the conference template:

--- a/templates/conference/show.html.twig
+++ b/templates/conference/show.html.twig
@@ -3,6 +3,13 @@
{% block title %}Conference Guestbook - {{ conference }}{% endblock %}

{% block body %}
{% for message in app.flashes('notification') %}
<div class="alert alert-info alert-dismissible fade show">
{{ message }}
<button type="button" class="close" data-dismiss="alert" aria-
abel="Close">×</button>
</div>
{% endfor %}

+ + + =+ + + +

<h2 class="mb-5">
{{ conference }} Conference
</h2>

The users will now be notified that their submission is moderated:

253

/conference/amsterdam-2019

I&| Conference Guestbook

AMSTERDAM 2019 PARIS 2020

Thank you for the feedback; your comment will be posted after moderation.

Amsterdam 2019 Conference

chas Add your own
That was an amazing conference! feedbaCk
Your name

Text

As an added bonus, we have a nice notification at the top of the website
if there is a form error:

254

/conference/amsterdam-2019

I&| Conference Guestbook

AMSTERDAM 2019 PARIS 2020

Can you check your submission? There are some problems with it.

Amsterdam 2019 Conference

Lucas

Add your own
feedback

Your name

Th\s value should not be

blank.

| o]

That was an amazing conference!

Helene Text

[LLGEN This value should not be

That was an amazing conference! blank.

Email

There are 4 comments Th\s value is not a valid email
: address.
Next

not an email o }

Photo

Browse

Submit
200 | POST@conf.. 65ms 20MB| (M3 [E]3 L5584 (G@5 & anon.) 5ms =] 4 Ed sever @ 501 X

Flash messages use the HTTP session system as a storage medium. The
main consequence is that the HTTP cache is disabled as the session
system must be started to check for messages.

This is the reason why we have added the flash messages snippet in
the show.html.twig template and not in the base one as we would have
lost HTTP cache for the homepage.

25.2 Notifying Admins by Email

Instead of sending an email via MailerInterface to notify the admin that
a comment has just been posted, switch to use the Notifier component in
the message handler:

255

--- a/src/MessageHandler/CommentMessageHandler.php
+++ b/src/MessageHandler/CommentMessageHandler.php
@@ -4,14 +4,14 @@ namespace App\MessageHandler;

use App\ImageOptimizer;
use App\Message\CommentMessage;
+use App\Notification\CommentReviewNotification;
use App\Repository\CommentRepository;
use App\SpamChecker;
use Doctrine\ORM\EntityManagerInterface;
use Psr\Log\LoggerInterface;
-use Symfony\Bridge\Twig\Mime\NotificationEmail;
-use Symfony\Component\Mailer\MailerInterface;
use Symfony\Component\Messenger\Handler\MessageHandlerInterface;
use Symfony\Component\Messenger\MessageBusInterface;
+use Symfony\Component\Notifier\NotifierInterface;
use Symfony\Component\Workflow\WorkflowInterface;

class CommentMessageHandler implements MessageHandlerInterface
@@ -21,22 +21,20 @@ class CommentMessageHandler implements
MessageHandlerInterface
private $commentRepository;
private $bus;
private $workflow;
- private $mailer;
+ private $notifier;
private $imageOptimizer;
- private $adminEmail;
private $photoDir;
private $logger;

- public function _ construct(EntityManagerInterface $entityManager,
SpamChecker $spamChecker, CommentRepository $commentRepository,
MessageBusInterface $bus, WorkflowInterface $commentStateMachine,
MailerInterface $mailer, ImageOptimizer $imageOptimizer, string $adminEmail,
string $photoDir, LoggerInterface $logger = null)
+ public function _ construct(EntityManagerInterface $entityManager,
SpamChecker $spamChecker, CommentRepository $commentRepository,
MessageBusInterface $bus, WorkflowInterface $commentStateMachine,
NotifierInterface $notifier, ImageOptimizer $imageOptimizer, string $photoDir,
LoggerInterface $logger = null)
{

$this->entityManager = $entityManager;

$this->spamChecker = $spamChecker;

$this->commentRepository = $commentRepository;

$this->bus = $bus;

$this->workflow = $commentStateMachine;
- $this->mailer = $mailer;
+ $this->notifier = $notifier;

256

$this->imageOptimizer = $imageOptimizer;
- $this->adminEmail = $adminEmail;
$this->photoDir = $photoDir;
$this->logger = $logger;
}
@@ -62,13 +60,7 @@ class CommentMessageHandler implements
MessageHandlerInterface

$this->bus->dispatch($message);
} elseif ($this->workflow->can($comment, 'publish') || $this->workflow-
>can($comment, 'publish ham')) {
- $this->mailer->send((new NotificationEmail())
- ->subject('New comment posted')
- ->htmlTemplate('emails/comment notification.html.twig")
- ->from($this->adminEmail)
- ->to($this->adminEmail)
- ->context (['comment' => $comment])
-);
+ $this->notifier->send(new CommentReviewNotification($comment),
...$this->notifier->getAdminRecipients());
} elseif ($this->workflow->can($comment, 'optimize')) {
if ($comment->getPhotoFilename()) {
$this->imageOptimizer->resize($this->photoDir.'/".$comment-
>getPhotoFilename());

The getAdminRecipients() method returns the admin recipients as
configured in the notifier configuration; update it now to add your own
email address:

--- a/config/packages/notifier.yaml
+++ b/config/packages/notifier.yaml
@@ -13,4 +13,4 @@ framework:
medium: ['email']
low: ['email']
admin recipients:
- { email: admin@example.com }
- { email: "%env(string:default:default admin_email:ADMIN EMAIL)%"

-+

Now, create the CommentReviewNotification class:

src/Notification/CommentReviewNotification.php

App\Notification

App\Entity\Comment
Symfony\Component\Notifier\Message\EmailMessage

257

Symfony\Component\Notifier\Notification\EmailNotificationInterface
Symfony\Component\Notifier\Notification\Notification
Symfony\Component\Notifier\Recipient\Recipient

CommentReviewNotification Notification
EmailNotificationInterface

$comment
__construct(Comment $comment
$this->comment = $comment
__construct('New comment posted’
asEmailMessage(Recipient $recipient, string $transport
EmailMessage
$message = EmailMessage::fromNotification($this, $recipient
$transport
$message- >getMessage

htmlTemplate('emails/comment notification.html.twig'
context (| 'comment’ $this->comment

$message

The asEmailMessage() method from EmailNotificationInterface is

optional, but it allows to customize the email.

One benefit of using the Notifier instead of the mailer directly to send
emails is that it decouples the notification from the “channel” used for it.
As you can see, nothing explicitly says that the notification should be sent

by email.

Instead, the channel is configured in config/packages/notifier.yaml

depending on the importance of the notification (low by default):

config/packages/notifier.yaml

framework
notifier
channel policy
use chat/slack, chat/telegram, sms/twilio or sms/nexmo

258

urgent: ['email'

high: ['email’
medium "email'’
low "email’

We have talked about the browser and the email channels. Let’s see some
fancier ones.

25.3 Chatting with Admins

Let’s be honest, we all wait for positive feedback. Or at least constructive
feedback. If someone posts a comment with words like “great” or
“awesome”, we might want to accept them faster than the others.

For such messages, we want to be alerted on an instant messaging system
like Slack or Telegram in addition to the regular email.

Install Slack support for Symfony Notifier:

$ symfony composer req slack-notifier

To get started, compose the Slack DSN with a Slack access token and
the Slack channel identifier where you want to send messages:
slack://ACCESS_TOKEN@default?channel=CHANNEL.

As the access token is sensitive, store the Slack DSN in the secret store:

$ symfony console secrets:set SLACK DSN

Do the same for production:

$ APP_ENV=prod symfony console secrets:set SLACK DSN

Enable the chatter Slack support:

--- a/config/packages/notifier.yaml
+++ b/config/packages/notifier.yaml
@@ ‘117 +1J7 @@
framework:
notifier:

259

- #ichatter transports:

- # slack: '%env(SLACK DSN)%'

+ chatter_transports:

+ slack: '%env(SLACK DSN)%'
telegram: '%env(TELEGRAM DSN)%'
#texter_transports:
twilio: '%env(TWILIO DSN)%'

Update the Notification class to route messages depending on the
comment text content (a simple regex will do the job):

--- a/src/Notification/CommentReviewNotification.php
+++ b/src/Notification/CommentReviewNotification.php
@@ -27,4 +27,15 @@ class CommentReviewNotification extends Notification
implements EmailNotificationInterface
->context(['comment' => $this->comment])

);
}
+
+ public function getChannels(Recipient $recipient): array
b
+ if (preg match('{\b(great|awesome)\b}i', $this->comment->getText())) {
+ return ['email', 'chat/slack'];
+ }
+
+ $this->importance(Notification: :IMPORTANCE LOW);
+
+ return ['email'];
+)
}

We have also changed the importance of “regular” comments as it slightly
tweaks the design of the email.

And done! Submit a comment with “awesome” in the text, you should
receive a message on Slack.

As for email, you can implement ChatNotificationInterface to override
the default rendering of the Slack message:

--- a/src/Notification/CommentReviewNotification.php
+++ b/src/Notification/CommentReviewNotification.php
@@ -3,12 +3,17 @@

namespace App\Notification;

use App\Entity\Comment;

260

+use Symfony\Component\Notifier\Bridge\Slack\Block\SlackDividerBlock;
+use Symfony\Component\Notifier\Bridge\Slack\Block\SlackSectionBlock;
+use Symfony\Component\Notifier\Bridge\Slack\SlackOptions;
+use Symfony\Component\Notifier\Message\ChatMessage;
use Symfony\Component\Notifier\Message\EmailMessage;
+use Symfony\Component\Notifier\Notification\ChatNotificationInterface;
use Symfony\Component\Notifier\Notification\EmailNotificationInterface;
use Symfony\Component\Notifier\Notification\Notification;
use Symfony\Component\Notifier\Recipient\Recipient;

-class CommentReviewNotification extends Notification implements
EmailNotificationInterface

+class CommentReviewNotification extends Notification implements
EmailNotificationInterface, ChatNotificationInterface

{

private $comment;

@@ -30,6 +35,28 @@ class CommentReviewNotification extends Notification
implements EmailNotificatio
return $message;
}

+ public function asChatMessage(Recipient $recipient, string $transport =

null): ?ChatMessage
{
if ('slack' !== $transport) {
return null;
}

$message = ChatMessage::fromNotification($this, $recipient,
$transport);
$message->subject($this->getSubject());
$message->options((new SlackOptions())
->iconEmoji('tada")
->iconUrl("https://guestbook.example.com")
->username(' Guestbook")
->block((new SlackSectionBlock())->text($this->getSubject()))
->block(new SlackDividerBlock())
->block((new SlackSectionBlock())
->text(sprintf('%s (%s) says: %s', $this->comment-
>getAuthor(), $this->comment->getEmail(), $this->comment->getText()))

)
)s

return $message;

+ + + + + +

+ + + + + + + + +

}

+ + + + + +

public function getChannels(Recipient $recipient): array

{

261

if (preg match('{\b(great|awesome)\b}i', $this->comment->getText())) {

It is better, but let’s go one step further. Wouldn’t it be awesome to be
able to accept or reject a comment directly from Slack?

Change the notification to accept the review URL and add two buttons in
the Slack message:

--- a/src/Notification/CommentReviewNotification.php
+++ b/src/Notification/CommentReviewNotification.php
@@ -3,6 +3,7 @@

namespace App\Notification;

use App\Entity\Comment;
+use Symfony\Component\Notifier\Bridge\Slack\Block\SlackActionsBlock;
use Symfony\Component\Notifier\Bridge\Slack\Block\SlackDividerBlock;
use Symfony\Component\Notifier\Bridge\Slack\Block\SlackSectionBlock;
use Symfony\Component\Notifier\Bridge\Slack\SlackOptions;
@@ -16,10 +17,12 @@ use Symfony\Component\Notifier\Recipient\Recipient;
class CommentReviewNotification extends Notification implements
EmailNotificationInterface, ChatNotificationInterface
{
private $comment;
+ private $reviewUrl;

- public function _ construct(Comment $comment)
+ public function _ construct(Comment $comment, string $reviewUrl)
{
$this->comment = $comment;
+ $this->reviewlrl = $reviewUrl;

parent:: construct('New comment posted');
}
@@ -52,6 +55,10 @@ class CommentReviewNotification extends Notification
implements EmailNotificatio
->block((new SlackSectionBlock())
->text(sprintf('%s (%s) says: %s', $this->comment-
>getAuthor(), $this->comment->getEmail(), $this->comment->getText()))

->block((new SlackActionsBlock())
->button('Accept’, $this->reviewUrl, 'primary")
->button('Reject’, $this->reviewUrl.'?reject=1", 'danger')

+ + + +

)
);

return $message;

[t is now a matter of tracking changes backward. First, update the

262

message handler to pass the review URL:

--- a/src/MessageHandler/CommentMessageHandler.php
+++ b/src/MessageHandler/CommentMessageHandler.php
@@ -60,7 +60,8 @@ class CommentMessageHandler implements MessageHandlerInterface

$this->bus->dispatch($message);
} elseif ($this->workflow->can($comment, 'publish') || $this->workflow-
>can($comment, 'publish ham')) {
- $this->notifier->send(new CommentReviewNotification($comment),
...$this->notifier->getAdminRecipients());

+ $notification = new CommentReviewNotification($comment, $message-
>getReviewlrl());
+ $this->notifier->send($notification, ...$this->notifier-

>getAdminRecipients());
} elseif ($this->workflow->can($comment, 'optimize')) {
if ($comment->getPhotoFilename()) {
$this->imageOptimizer->resize($this->photoDir."/".$comment-
>getPhotoFilename());

As you can see, the review URL should be part of the comment message,
let’s add it now:

--- a/src/Message/CommentMessage.php

+++ b/src/Message/CommentMessage.php

@@ -5,14 +5,21 @@ namespace App\Message;
class CommentMessage

{
private $id;
+ private $reviewUrl;
private $context;

- public function _ construct(int $id, array $context = [])
+ public function construct(int $id, string $reviewUrl, array $context =

{
$this->id = $id;
+ $this->reviewlrl = $reviewUrl;
$this->context = $context;

}
+ public function getReviewUrl(): string
+
+ return $this->reviewUrl;
+)
+

public function getId(): int
{

263

return $this->id;

Finally, update the controllers to generate the review URL and pass it in
the comment message constructor:

--- a/src/Controller/AdminController.php

+++ b/src/Controller/AdminController.php

@@ -12,6 +12,7 @@ use Symfony\Component\HttpFoundation\Response;
use Symfony\Component\HttpKernel\KernelInterface;
use Symfony\Component\Messenger\MessageBusInterface;

use Symfony\Component\Routing\Annotation\Route;

+use Symfony\Component\Routing\Generator\UrlGeneratorInterface;
use Symfony\Component\Workflow\Registry;

use Twig\Environment;

@@ -51,7 +52,8 @@ class AdminController extends AbstractController
$this->entityManager->flush();

if ($accepted) {
- $this->bus->dispatch(new CommentMessage($comment->getId()));

+ $reviewUrl = $this->generateUrl('review_comment', ['id' =>
$comment->getId()], UrlGeneratorInterface::ABSOLUTE URL);
+ $this->bus->dispatch(new CommentMessage($comment->getId(),
$reviewlrl));

}

return $this->render('admin/review.html.twig', [
--- a/src/Controller/ConferenceController.php
+++ b/src/Controller/ConferenceController.php
@@ -17,6 +17,7 @@ use Symfony\Component\Messenger\MessageBusInterface;
use Symfony\Component\Notifier\Notification\Notification;
use Symfony\Component\Notifier\NotifierInterface;
use Symfony\Component\Routing\Annotation\Route;
+use Symfony\Component\Routing\Generator\UrlGeneratorInterface;
use Twig\Environment;

class ConferenceController extends AbstractController
@@ -89,7 +90,8 @@ class ConferenceController extends AbstractController
"permalink’' => $request->getUri(),
15

- $this->bus->dispatch(new CommentMessage($comment->getId(),
$context));

+ $reviewlrl = $this->generateUrl('review comment', ['id' =>
$comment->getId()], UrlGeneratorInterface::ABSOLUTE URL);
+ $this->bus->dispatch(new CommentMessage($comment->getId(),

$reviewlrl, $context));

264

$notifier->send(new Notification('Thank you for the feedback; your
comment will be posted after moderation.', ['browser']));

Code decoupling means changes in more places, but it makes it easier to
test, reason about, and reuse.

Try again, the message should be in good shape now:

'L+ Guestbook APP 2:11 pM
" New comment posted

Fabien (fan@sf.io) says: This conferences was really awesome. | will come back next year for
sure. Keep up the good work.

Accept Reject

25.4 Going Asynchronous across the Board

Let me explain a slight issue that we should fix. For each comment, we
receive an email and a Slack message. If the Slack message errors (wrong
channel id, wrong token, ...), the messenger message will be retried three
times before being discarded. But as the email is sent first, we will receive
3 emails and no Slack messages. One way to fix it is to send Slack
messages asynchronously like emails:

--- a/config/packages/messenger.yaml

+++ b/config/packages/messenger.yaml

@@ -20,3 +20,5 @@ framework:
Route your messages to the transports
App\Message\CommentMessage: async
Symfony\Component\Mailer\Messenger\SendEmailMessage: async

+ Symfony\Component\Notifier\Message\ChatMessage: async

+ Symfony\Component\Notifier\Message\SmsMessage: async

As soon as everything is asynchronous, messages become independent.

We have also enabled asynchronous SMS messages in case you also want
to be notified on your phone.

265

25.5 Notifying Users by Email

The last task is to notify users when their submission is approved. What
about letting you implement that yourself?

e Going Further

» Symfony flash messages.

266

https://symfony.com/doc/current/controller.html#flash-messages

Step 26
Exposing an APl with API
Platform

We have finished the implementation of the Guestbook website. To
allow more usage of the data, what about exposing an API now? An API
could be used by a mobile application to display all conferences, their
comments, and maybe let attendees submit comments.

In this step, we are going to implement a read-only API.

26.1 Installing API Platform

Exposing an API by writing some code is possible, but if we want to use
standards, we’d better use a solution that already take care of the heavy
lifting. A solution like API Platform:

$ symfony composer req api

267

26.2 Exposing an API for Conferences

A few annotations on the Conference class is all we need to configure the
API:

--- a/src/Entity/Conference.php
+++ b/src/Entity/Conference.php
@@ -2,15 +2,24 @@

namespace App\Entity;

+use ApiPlatform\Core\Annotation\ApiResource;

use Doctrine\Common\Collections\ArrayCollection;

use Doctrine\Common\Collections\Collection;

use Doctrine\ORM\Mapping as ORM;

use Symfony\Bridge\Doctrine\Validator\Constraints\UniqueEntity;
+use Symfony\Component\Serializer\Annotation\Groups;

use Symfony\Component\String\Slugger\SluggerInterface;

/**

* @ORM\Entity(repositoryClass="App\Repository\ConferenceRepository")
* @UniqueEntity("slug")
+*
+ * @ApiResource(
+*
collectionOperations={"get"={"normalization context"={"groups"="conference:1ist"}}},
+*
itemOperations={"get"={"normalization context"={"groups"="conference:item"}}},
+ ¥ order={"year"="DESC", "city"="ASC"},

+ * paginationEnabled=false
+ %)
*/
class Conference
{

@@ -18,21 +26,29 @@ class Conference
* @ORM\Id()
* @ORM\GeneratedValue()

* @ORM\Column(type="integer")
*

I * @Groups({"conference:1list", "conference:item"})
*
private $id;
/**
* @ORM\Column(type="string", length=255)
*
i * @Groups({"conference:1list", "conference:item"})

*/

268

private $city;

/**
* @ORM\Column(type="string", length=4)

+ *

+ * @Groups({"conference:1list", "conference:item"})
*/

private $year;

/**

* @ORM\Column(type="boolean")
*

-+

* @Groups({"conference:1list", "conference:item"})
*/
private $isInternational;

-+

@@ -43,6 +59,8 @@ class Conference

/**
* @ORM\Column(type="string", length=255, unique=true)
+ *
+ * @Groups({"conference:1list", "conference:item"})
*/

private $slug;

The main @ApiResource annotation configures the API for conferences.
[t restricts possible operations to get and configures various things: like
which fields to display and how to order the conferences.

By default, the main entry point for the API is /api thanks to
configuration from config/routes/api platform.yaml that was added by
the package’s recipe.

A web interface allows you to interact with the API:

269

/api

APi PLATFORM

a

Conference v

GET /api/conferences Retrieves the collection of Conference resources.
GET /api/conferences/{id} Retrieves a Conference resource.
Schemas v

Conference-conference:item >

Conference-conference:list >

Conference:jsonld-conference:item >

Conference:jsonld-conference:list >

Available formats: jsonid json html
Other APl docs: ReDoc GraphiQL

200 api_entryp _‘_ 182ms 10.0 \ ‘ anon. ¥ 2m:

Use it to test the various possibilities:

270

/api

Curl

curl -X GET "https://127.0.0.1:8000/api/conferences" -H "accept: application/ld+json"

APi PLATFORM

Request URL

/conferences

Server response

Code Details

200 Response body

"@context" api/contexts/Conference",
reid" api/conferences",
"G typ "hydra:Collection",
"hydra:member": [
{
"/api/conferences/2",
"Conference",

"isInternational”: false,
"slug”: "paris-2020"

e "/api/conferences/1",
"@type": "Conference",

Yok

"city" Amsterdam" ,

"year" 019",
"isInternational”: true,
"slug": "amsterdam-2019"

}

1,
"hydra:totalItems": 2
}

Response headers

cache-control: private, must-revalidate

content-length: 407

content-type: application/ld+json; charset=utf-8
Fri, 06 Dec 2019 11:06:59 GMT
"1d3d14fe4b9b729d7d72a83e25bad00c"
<https://127.0.0.1:8000/api/docs.

rel="http://www.w3.org/ns/hydra/corefapiDocumentation"

status: 200

vary: Accept

x-content-type-options: nosniff

x-debug-token: ebced6

x-debug-token-link: https://127.0.0.1:8000/_profiler/ebced6

x-frame-options: deny

x-robots-tag: noindex

x-symfony-cache: GET /api/conferences:

Responses

Code Description

200
Conference collection response

31 €10

Download

Links

No links

Imagine the time it would take to implement all of this from scratch!

26.3 Exposing an API for Comments

Do the same for comments:

--- a/src/Entity/Comment.php
+++ b/src/Entity/Comment.php
0@ -2,12 +2,25 @@

271

namespace App\Entity;

+use ApiPlatform\Core\Annotation\ApiFilter;

+use ApiPlatform\Core\Annotation\ApiResource;

+use ApiPlatform\Core\Bridge\Doctrine\Orm\Filter\SearchFilter;
use Doctrine\ORM\Mapping as ORM;

+use Symfony\Component\Serializer\Annotation\Groups;
use Symfony\Component\Validator\Constraints as Assert;

/**
* @ORM\Entity(repositoryClass="App\Repository\CommentRepository")
* @ORM\HasLifecycleCallbacks()
I
+ * @ApiResource(
+*
collectionOperations={"get"={"normalization context"={"groups"="comment:1ist"}}},
+*
itemOperations={"get"={"normalization context"={"groups"="comment:item"}}},
* order={"createdAt"="DESC"},
* paginationEnabled=false

I)

-+

+ + + +

* @ApiFilter(SearchFilter::class, properties={"conference": "exact"})
*/

class Comment

{

@@ -15,18 +27,24 @@ class Comment

* @ORM\Id()

* @ORM\GeneratedValue()

* @ORM\Column(type="integer")
*

+ +

* @Groups({"comment:1list", "comment:item"})
*/
private $id;

/**
* @RM\Column(type="string", length=255)
* @Assert\NotBlank
+ *
+ * @Groups({"comment:1ist", "comment:item"})
*/
private $author;

Vioio

* @ORM\Column(type="text")
* @Assert\NotBlank
+ *
+ * @Groups({"comment:1list", "comment:item"})

272

*/
private $text;

@@ -34,22 +52,30 @@ class Comment
* @ORM\Column(type="string", length=255)
* @Assert\NotBlank

* @Assert\Email
*

=+

* @Groups({"comment:1list", "comment:item"})
*/
private $email;

-+

/**
* @ORM\Column(type="datetime")

+ *

+ * @Groups({"comment:1list", "comment:item"})
*/

private $createdAt;

/**

* @ORM\ManyToOne(targetEntity="App\Entity\Conference",
inversedBy="comments")

* @ORM\JoinColumn(nullable=false)
+ *
+ * @Groups({"comment:1list", "comment:item"})

*/

private $conference;

/**
* @ORM\Column(type="string", length=255, nullable=true)
+ *
+ * @Groups({"comment:1list", "comment:item"})
*/
private $photoFilename;

The same kind of annotations are used to configure the class.

26.4 Restricting Comments exposed by the AP

By default, API Platform exposes all entries from the database. But for
comments, only the published ones should be part of the API.

When you need to restrict the items returned by the API, create a service
that implements QueryCollectionExtensionInterface to control the
Doctrine query used for collections and/or QueryItemExtensionInterface

273

to control items:

src/Api/FilterPublished CommentQueryExtension.php
App\Api

ApiPlatform\Core\Bridge\Doctrine\Orm\Extension\
QueryCollectionExtensionInterface

ApiPlatform\Core\Bridge\Doctrine\Orm\Extension\QueryItemExtensionInterface

ApiPlatform\Core\Bridge\Doctrine\Orm\Util\QueryNameGeneratorInterface

App\Entity\Comment

Doctrine\ORM\QueryBuilder

FilterPublishedCommentQueryExtension
QueryCollectionExtensionInterface, QueryItemExtensionInterface

applyToCollection(QueryBuilder $gb
QueryNameGeneratorInterface $queryNameGenerator, string $resourceClass, string
$operationName

Comment: :class $resourceClass

$ab->andWhere(sprintf("%s.state = 'published'"
$ab->getRootAliases()[0

applyToItem(QueryBuilder $gb, QueryNameGeneratorInterface

$queryNameGenerator, string $resourceClass $identifiers, string
$operationName $context
Comment: :class $resourceClass

$ab->andWhere(sprintf("%s.state = "published'"
$ab->getRootAliases()[0

The query extension class applies its logic only for the Comment resource
and modify the Doctrine query builder to only consider comments in the
published state.

26.5 Configuring CORS

By default, the same-origin security policy of modern HTTP clients make
calling the API from another domain forbidden. The CORS bundle,
installed as part of composer req api, sends Cross-Origin Resource

274

Sharing headers based on the CORS_ALLOW_ORIGIN environment variable.

By default, its value, defined in .env, allows HTTP requests from
localhost and 127.0.0.1 on any port. That’s exactly what we need as for

the next step as we will create an SPA that will have its own web server
that will call the APL.

e Going Further

» SymfonyCasts API Platform tutorial,

* To enable the GraphQL support, run composer require webonyx/
graphql-php, then browse to /api/graphql.

275

https://symfonycasts.com/screencast/api-platform

Step 27

Building an SPA

Most of the comments will be submitted during the conference where
some people do not bring a laptop. But they probably have a smartphone.
What about creating a mobile app to quickly check the conference
comments?

One way to create such a mobile application is to build a Javascript Single
Page Application (SPA). An SPA runs locally, can use local storage, can
call a remote HTTP API, and can leverage service workers to create an
almost native experience.

27.1 Creating the Application

To create the mobile application, we are going to use Preact and Symfony
Encore. Preact is a small and efficient foundation well-suited for the
Guestbook SPA.

To make both the website and the SPA consistent, we are going to reuse
the Sass stylesheets of the website for the mobile application.

Create the SPA application under the spa directory and copy the website

277

https://preactjs.com/

stylesheets:

$ mkdir -p spa/src spa/public spa/assets/css
$ cp assets/css/*.scss spa/assets/css/
$ cd spa

We have created a public directory as we will mainly interact with the
SPA via a browser. We could have named it build if we only wanted to
build a mobile application.

Initialize the package.json file (equivalent of the composer.json file for
JavaScript):

$ yarn init -y

Now, add some required dependencies:

$ yarn add @symfony/webpack-encore @babel/core @babel/preset-env babel-preset-
preact preact html-webpack-plugin bootstrap

For good measure, add a .gitignore file:

.gitignore

/node_modules

/public

/yarn-error.log

used later by Cordova

/app

The last configuration step is to create the Webpack Encore
configuration:

webpack.config.js

const Encore = require('@symfony/webpack-encore’
const HtmlWebpackPlugin = require('html-webpack-plugin’

Encore
setOutputPath('public/’
setPublicPath('/’
cleanupOutputBeforeBuild
addEntry('app', './src/app.js’
enablePreactPreset

278

enableSingleRuntimeChunk
addPlugin HtmlWebpackPlugin({ template: 'src/index.ejs’

alwaysWriteToDisk: true

module.exports = Encore.getWebpackConfig

27.2 Creating the SPA Main Template

Time to create the initial template in which Preact will render the

application:

src/index.ejs

html

head
meta http-equiv="Content-Type" content="text/html; charset=utf-8"

meta http-equiv="X-UA-Compatible"” content="IE=edge"

meta name="msapplication-tap-highlight" content="no"

meta name="viewport" content="user-scalable=no, initial-scale=1, maximum-
scale=1, minimum-scale=1, width=device-width"

title>Conference Guestbook application</title
head
bodv
div id="app
body
html

div

The «div> tag is where the application will be rendered by JavaScript.
Here is the first version of the code that renders the “Hello World” view:

src/app.js
import {h, render} from 'preact’;

function App() {

return (
<div>
Hello world!
</div>
)

279

render (<App />, document.getElementById('app'));

The last line registers the App() function on the #app element of the HTML
page.
Everything is now ready!

27.3 Running an SPA in the Browser

As this application is independent of the main website, we need to run
another web server:

$ symfony server:start -d --passthru-index.html

The --passthru flag tells the web server to pass all HTTP requests to
the public/index.html file (public/ is the web server default web root
directory). This page is managed by the Preact application and it gets the
page to render via the “browser” history.

To compile the CSS and the JavaScript files, run yarn:

$ yarn encore dev

Open the SPA in a browser:

$ symfony open:local

And look at our hello world SPA:

280

Hello world!

27.4 Adding a Router to handle States

The SPA is currently not able to handle different pages. To implement
several pages, we need a router, like for Symfony. We are going to use
preact-router. It takes a URL as an input and matches a Preact
component to display.

Install preact-router:

$ yarn add preact-router

Create a page for the homepage (a Preact component):

src/pages/home.js
import {h} from 'preact’;
export default function Home() {

return (
<div>Home</div>
)s

};

281

And another for the conference page:

src/pages/conference.js

import {h} from 'preact’;

export default function Conference() {
return (
<div>Conference</div>
);

b
Replace the “Hello World” div with the Router component:

--- a/src/app.js
+++ b/src/app.js
@e -1,9 +1,22 @@
import {h, render} from 'preact’;
+import {Router, Link} from 'preact-router’;
+
+import Home from './pages/home’;
+import Conference from './pages/conference';

function App() {
return (
<div>

Hello world!

<header>
<Link href="/">Home</Link>

<Link href="/conference/amsterdam2019">Amsterdam 2019</Link>

</header>

<Router>
<Home path="/" />
<Conference path="/conference/:slug" />
</Router>
</div>

+ + 4+ + + + + + + +

Rebuild the application:

$ yarn encore dev

If you refresh the application in the browser, you can now click on the
“Home” and conference links. Note that the browser URL and the back/

282

forward buttons of your browser work as you would expect it.

27.5 Styling the SPA

As for the website, let’s add the Sass loader:

$ yarn add node-sass "sass-loader@"7.0"

Enable the Sass loader in Webpack and add a reference to the stylesheet:

--- a/src/app.js
+++ b/src/app.js
@e -1,3 +1,5 @@
+import '../assets/css/app.scss’;
+
import {h, render} from 'preact’;
import {Router, Link} from 'preact-router’;

--- a/webpack.config.js
+++ b/webpack.config.js
@@ -7,6 +7,7 @@ Encore
.cleanupOutputBeforeBuild()
.addEntry(‘app', './src/app.js')
.enablePreactPreset()
+ .enableSassLoader()
.enableSingleRuntimeChunk()
.addPlugin(new HtmlWebpackPlugin({ template: 'src/index.ejs',
alwayshWriteToDisk: true }))

)

We can now update the application to use the stylesheets:

--- a/src/app.js

+++ b/src/app.js

@@ -9,10 +9,20 @@ import Conference from './pages/conference';
function App() {

return (
<div>

- <header>
- <Link href="/">Home</Link>
-

- <Link href="/conference/amsterdam2019">Amsterdam 2019</Link>
+ <header className="header">
+ <nav className="navbar navbar-light bg-light">

283

+ <div className="container">
+ <Link className="navbar-brand mr-4 pr-2" href="/">
+ 📙 Guestbook
+ </Link>
+ </div>
+ </nav>
+
+ <nav className="bg-light border-bottom text-center">
+ <Link className="nav-conference" href="/conference/
amsterdam2019">
+ Amsterdam 2019
+ </Link>
+ </nav>
</header>
<Router>

Rebuild the application once more:

$ yarn encore dev
You can now enjoy a fully styled SPA:

/

I5] Guestbook

AMSTERDAM 2019
Home

284

27.6 Fetching Data from the API

The Preact application structure is now finished: Preact Router handles
the page states - including the conference slug placeholder - and the main
application stylesheet is used to style the SPA.

To make the SPA dynamic, we need to fetch the data from the API via
HTTP calls.

Configure Webpack to expose the API endpoint environment variable:

--- a/webpack.config.js
+++ b/webpack.config.js
@@ -1,3 +1,4 @@
+const webpack = require('webpack');
const Encore = require('@symfony/webpack-encore');
const HtmlWebpackPlugin = require('html-webpack-plugin');

@@ -10,6 +11,9 @@ Encore

.enableSassLoader()

.enableSingleRuntimeChunk()

.addPlugin(new HtmlWebpackPlugin({ template: 'src/index.ejs',
alwayshWriteToDisk: true }))
+ .addPlugin(new webpack.DefinePlugin({
+ "ENV_API ENDPOINT': JSON.stringify(process.env.API ENDPOINT),
+ 1)

)

module.exports = Encore.getWebpackConfig();

The API_ENDPOINT environment variable should point to the web server
of the website where we have the API endpoint under /api. We will
configure it properly when we will run yarn encore soon.

Create an api.js file that abstracts data retrieval from the API:

src/apilapi.js
function fetchCollection(path) {

return fetch(ENV_API_ENDPOINT + path).then(resp => resp.json()).then(json
=> json["hydra:member']);

}

export function findConferences() {
return fetchCollection('api/conferences');
}

285

export function findComments(conference) {
return fetchCollection('api/comments?conference="+conference.id);
}

You can now adapt the header and home components:

--- a/src/app.js
+++ b/src/app.js
@@ -2,11 +2,23 @@ import '../assets/css/app.scss';

import {h, render} from 'preact’;
import {Router, Link} from 'preact-router';
+import {useState, useEffect} from 'preact/hooks’;

+import {findConferences} from './api/api';
import Home from './pages/home’;

import Conference from './pages/conference’;

function App() {

+ const [conferences, setConferences] = useState(null);
+
+ useEffect(() => {
+ findConferences().then((conferences) => setConferences(conferences));
+ 5 [Ds
+
+ if (conferences === null) {
+ return <div className="text-center pt-5">Loading...</div>;
+ 1}
+
return (

<div>
<header className="header">

@@ -19,15 +31,17 @@ function App() {

</nav>

<nav className="bg-light border-bottom text-center">
<Link className="nav-conference" href="/conference/

amsterdam2019">

+
+

Amsterdam 2019
</Link>
{conferences.map((conference) => (
<Link className="nav-conference"

href={"/conference/'+conference.slug}>

+ {conference.city} {conference.year}
+ </Link>
+)}

286

</nav>

</header>

<Router>
- <Home path="/" />
- <Conference path="/conference/:slug" />

+ <Home path="/" conferences={conferences} />
+ <Conference path="/conference/:slug" conferences={conferences}
/>
</Router>
</div>
)
--- a/src/pages/home.js

+++ b/src/pages/home.js
ee -1,7 +1,28 @@
import {h} from 'preact’;
+import {Link} from 'preact-router’;
+
+export default function Home({conferences}) {
+ if (!conferences) {
+ return <div className="p-3 text-center">No conferences yet</div>;

+)

-export default function Home() {
return (
<div>Home</div>
<div className="p-3">
{conferences.map((conference)=> (
<div className="card border shadow-sm lift mb-3">
<div className="card-body">
<div className="card-title">
<h4 className="font-weight-light">
{conference.city} {conference.year}
</hd>
</div>

<Link className="btn btn-sm btn-blue stretched-1link"
ref={"/conference/"'+conference.slug}>
View
</Link>
</div>
</div>

N}

</div>

+ + + + + F T+ A+ + +FF o+ A+ +

);
-}
+}

Finally, Preact Router is passing the “slug” placeholder to the Conference
component as a property. Use it to display the proper conference and its

287

comments, again using the API; and adapt the rendering to use the API
data:

--- a/src/pages/conference. js
+++ b/src/pages/conference.js
@@ -1,7 +1,48 @@
import {h} from 'preact’;
+import {findComments} from '../api/api’;
+import {useState, useEffect} from 'preact/hooks';
+
+function Comment({comments}) {
if (comments !== null &% comments.length === 0) {
return <div className="text-center pt-4">No comments yet</div>;
}

if (!comments) {
return <div className="text-center pt-4">Loading...</div>;
}

return (
<div className="pt-4">
{comments.map(comment => (
<div className="shadow border rounded-lg p-3 mb-4">
<div className="comment-img mr-3">
{!comment.photoFilename ? "' : (
<a href={ENV_API_ENDPOINT+'uploads/
hotos/'+comment.photoFilename} target="_blank">
<img src={ENV_API_ENDPOINT+'uploads/
hotos/'+comment.photoFilename} />

)}

</div>

+ + 4+ + + T +T + + F A+ A+ F A+ F A+ A+ o+

<h5 className="font-weight-light mt-3
mb-0">{comment.author}</h5>

+ <div className="comment-text">{comment.text}</div>
+ </div>

+)}

+ </div>

+)

+}

+

+export default function Conference({conferences, slug}) {
+ const conference = conferences.find(conference => conference.slug ===

slug);
+ const [comments, setComments] = useState(null);

useEffect(() => {
findComments(conference).then(comments => setComments(comments));

+ + +

288

+ }, [slugl);

-export default function Conference() {
return (
- <div>Conference</div>

+ <div className="p-3">
+ <h4>{conference.city} {conference.year}</h4>
+ <Comment comments={comments} />
+ </div>
);
-}
+}

The SPA now needs to know the URL to our API, via the API_ENDPOINT
environment variable. Set it to the API web server URL (running in the ..
directory):

$ API_ENDPOINT="symfony var:export SYMFONY DEFAULT ROUTE_URL --dir=.." yarn
encore dev

You could also run in the background now:

$ API_ENDPOINT="symfony var:export SYMFONY DEFAULT ROUTE_URL --dir=.." symfony
run -d --watch-webpack.config.js yarn encore dev --watch

And the application in the browser should now work properly:

289

/

|5 Guestbook

PARIS 2020 AMSTERDAM 2019

Paris 2020

Amsterdam 2019

/conference/amsterdam-2019

I5] Guestbook

PARIS 2020 AMSTERDAM 2019

Amsterdam 2019

Lucas

That was an amazing conference!

Wow! We now have a fully-functional, SPA with router and real data. We
could organize the Preact app further if we want, but it is already working
great.

290

27.7 Deploying the SPA in Production

SymfonyCloud allows to deploy multiple applications per project.
Adding another application can be done by creating a
.symfony.cloud.yaml file in any sub-directory. Create one under spa/
named spa:

.symfony.cloud.yaml
name: spa

type: php:7.3
size: S
disk: 256

build
flavor: none

dependencies
nodejs
yaI_n II*lI

web
commands
start: sleep
locations
"
root: "public"
index
"index.html"
scripts: false
expires: 10m

hooks
build
set -x -e

curl -s https://get.symfony.com/cloud/configurator | (>&2 bash)
yarn-install

npm rebuild node-sass
yarn encore prod

Edit the .symfony/routes.yaml file to route the spa. subdomain to the spa
application stored in the project root directory:

$cd ../

291

--- a/.symfony/routes.yaml
+++ b/.symfony/routes.yaml
0@ -1.2 +1.5 @@
+"https://spa.{all}/": { tvpe: upstream. upstream: "spa:http" }
+"http://spa.{all}/": { type: redirect, to: "https://spa.{all}/" }
+
"https://{all}/": { type: upstream, upstream: "varnish:http", cache: {
enabled: false } }
"http://{all}/": { type: redirect, to: "https://{all}/" }

27.8 Configuring CORS for the SPA

If you deploy the code now, it won’t work as a browser would block the
API request. We need to explicitly allow the SPA to access the API. Get
the current domain name attached to your application:

$ symfony env:urls --first

Define the CORS_ALLOW_ORIGIN environment variable accordingly:

$ symfony var:set "CORS ALLOW ORIGIN=""symfony env:urls --first | sed 's#/$##’
| sed 's#https://#https://spa.#'"$"

If your domain is https://master-5szvwec-hzhac461b3a6o.eu.s5y.io/, the
sed calls will convert it to https://spa.master-5szvwec-
hzhac461b3a6o.eu.s5y.io.

We also need to set the API_ENDPOINT environment variable:

$ symfony var:set API ENDPOINT-"symfony env:urls --first"

Commit and deploy:

$ git add .
$ git commit -a -m'Add the SPA application’
$ symfony deploy

Access the SPA in a browser by specifying the application as a flag:

292

$ symfony open:remote --app-spa

27.9 Using Cordova to build a Smartphone Application

Apache Cordova is a tool that builds cross-platform smartphone
applications. And good news, it can use the SPA that we have just created.

Let’s install it:

$ cd spa
$ yarn global add cordova

You also need to install the Android SDK. This section only mentions
Android, but Cordova works with all mobile platforms, including iOS.

Create the application directory structure:

$ cordova create app

And generate the Android application:

$ cd app
$ cordova platform add android
$cd ..

That’s all you need. You can now build the production files and move
them to Cordova:

$ API_ENDPOINT="symfony var:export SYMFONY DEFAULT ROUTE URL --dir=.." yarn
encore production

$ m -rf app/www

$ mkdir -p app/www

$ cp -R public/ app/www

Run the application on a smartphone or an emulator:

$ cordova run android

293

e Going Further

* The official Preact website;
* The official Cordova website.

294

https://preactjs.com/
https://cordova.apache.org/

Step 28
Localizing an Application

With an international audience, Symfony has been able to handle
internationalization (i18n) and localization (110n) out of the box since
like ever. Localizing an application is not just about translating the
interface, it is also about plurals, date and currency formatting, URLs,
and more.

28.1 Internationalizing URLSs

The first step to internationalize the website is to internationalize the
URLs. When translating a website interface, the URL should be different
per locale to play nice with HTTP caches (never use the same URL and
store the locale in the session).

Use the special locale route parameter to reference the locale in routes:

--- a/src/Controller/ConferenceController.php

+++ b/src/Controller/ConferenceController.php

@@ -34,7 +34,7 @@ class ConferenceController extends AbstractController
}

295

/**
- * @Route("/". name="homepage")
+ * @Route("/{ locale}/", name="homepage")
*/
public function index(ConferenceRepository $conferenceRepository)

{

On the homepage, the locale is now set internally depending on the URL;
for instance, if you hit /fr/, $request->getLocale() returns fr.

As you will probably not be able to translate the content in all valid
locales, restrict to the ones you want to support:

--- a/src/Controller/ConferenceController.php
+++ b/src/Controller/ConferenceController.php
@@ -34,7 +34,7 @@ class ConferenceController extends AbstractController

}

/**

- * @Route("/{ localel}/". name="homepage")

+ * @Route("/{ locale<en|fr>}/", name="homepage")
*/

public function index(ConferenceRepository $conferenceRepository)

{

Each route parameter can be restricted by a regular expression inside < »>.
The homepage route now only matches when the locale parameter is en
or fr. Try hitting /es/, you should have a 404 as no route matches.

As we will use the same requirement in almost all routes, let’s move it to
a container parameter:

--- a/config/services.yaml

+++ b/config/services.yaml

@@ -7,6 +7,7 @@ parameters:
default _admin _email: admin@example.com
default domain: '127.0.0.1°
default scheme: 'http'

+ app.supported locales: 'en|fr'

router.request context.host:
'%env(default:default domain:SYMFONY DEFAULT ROUTE HOST)%'

router.request context.scheme:
"%env(default:default_domain:SYMFONY _DEFAULT ROUTE_SCHEME)%'

296

--- a/src/Controller/ConferenceController.php
+++ b/src/Controller/ConferenceController.php
@@ -34,7 +34,7 @@ class ConferenceController extends AbstractController

}

J**

- * @Route("/{ locale<en|fr>}/", name="homepage")

+ * @Route("/{ locale<%app.supported locales%>}/", name="homepage")
*/
public function index(ConferenceRepository $conferenceRepository)

{

Adding a language can be done by updating the app.supported languages

parameter.

Add the same locale route prefix to the other URLs:

--- a/src/Controller/ConferenceController.php
+++ b/src/Controller/ConferenceController.php
@@ -47,7 +47,7 @@ class ConferenceController extends AbstractController

}

/**
- * @Route("/conference header", name="conference header")
+ * @Route("/{ locale<%app.supported locales%>}/conference header",
name="conference_header")

*/

public function conferenceHeader(ConferenceRepository
$conferenceRepository)

@@ -60,7 +60,7 @@ class ConferenceController extends AbstractController
}

/**
- * @Route("/conference/{slug}", name="conference")
+ * @Route("/{ locale<%app.supported locales%>}/conference/{slug}",
name="conference")

*/

public function show(Request $request, Conference $conference,

CommentRepository $commentRepository, NotifierInterface $notifier, string

$photoDir)
{

We are almost done. We don’t have a route that matches / anymore. Let’s

add it back and make it redirect to /en/:

297

--- a/src/Controller/ConferenceController.php
+++ b/src/Controller/ConferenceController.php
@@ -33,6 +33,14 @@ class ConferenceController extends AbstractController
$this->bus = $bus;
}

J**
* @Route("/")

*/
public function indexNoLocale()

{
¥

Vioio

* @Route("/{_locale<%app.supported_locales%>}/", name="homepage")
*/

return $this->redirectToRoute('homepage', [' locale' => 'en']);

+ + + + + + + +

Now that all main routes are locale aware, notice that generated URLs on
the pages take the current locale into account automatically.

28.2 Adding a Locale Switcher

To allow users to switch from the default en locale to another one, let’s
add a switcher in the header:

--- a/templates/base.html.twig
+++ b/templates/base.html.twig
@@ -34,6 +34,16 @@
Admin

</1i>
+<1i class="nav-item dropdown">
+ <a class="nav-link dropdown-toggle" href="#" id="dropdown-language"
role="button"

+ data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">
+ English
+

+ <div class="dropdown-menu dropdown-menu-right" aria-labelledby="dropdown-
language">

+ <a class="dropdown-item" href="{{ path('homepage', { locale: 'en'})
}}">English
+ <a class="dropdown-item" href="{{ path('homepage', { locale: 'fr'})

}}'>Francais

298

+ </div>
+</11>

</div>
</div>

To switch to another locale, we explicitly pass the locale route
parameter to the path() function.

Update the template to display the current locale name instead of the
hard-coded “English”:

--- a/templates/base.html.twig
+++ b/templates/base.html.twig
@@ -37,7 +37,7 @@
<li class="nav-item dropdown">
<a class="nav-link dropdown-toggle" href="#" id="dropdown-language"
role="button"
data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">

- English
+ {{ app.request.locale|locale name(app.request.locale) }}

<div class="dropdown-menu dropdown-menu-right" aria-labelledby="dropdown-
language">

<a class="dropdown-item" href="{{ path('homepage', { locale: 'en'})
}}">English

app is a global Twig variable that gives access to the current request.
To convert the locale to a human readable string, we are using the
locale name Twig filter.

Depending on the locale, the locale name is not always capitalized. To
capitalize sentences properly, we need a filter that is Unicode aware, as
provided by the Symfony String component and its Twig implementation:

$ symfony composer req twig/string-extra

--- a/templates/base.html.twig
+++ b/templates/base.html.twig
@@ -37,7 +37,7 @@
<li class="nav-item dropdown">
<a class="nav-link dropdown-toggle" href="#" id="dropdown-language"
role="button"
data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">

299

- {{ app.request.locale|locale name(app.request.locale) }}
+ {{ app.request.locale|locale name(app.request.locale)|u.title }}

<div class="dropdown-menu dropdown-menu-right" aria-labelledby="dropdown-
language">
<a class="dropdown-item" href="{{ path('homepage', { locale: 'en'})
}}">English

You can now switch from French to English via the switcher and the
whole interface adapts itself quite nicely:

/fr/conference/amsterdam-2019

[& Conference Guestbook Admin Frangais ~

English
AMSTERDAM 2019 PARIS 2020
Francais

Amsterdam 2019 Conference

Llfcés 7 Add your own feedback

That was an amazing conference! Your name

Text

Helene

F—-:v r; Email

200 @ conference (&, ms 60MB [F] 1 £ 86in596ms Sg@5 L anon.) Oms Ed sever @ 501 X

28.3 Translating the Interface

To start translating the website, we need to install the Symfony
Translation component:

$ symfony composer req translation

Translating every single sentence on a large website can be tedious, but
fortunately, we only have a handful of messages on our website. Let’s
start with all the sentences on the homepage:

--- a/templates/base.html.twig
+++ b/templates/base.html.twig
@@ -20,7 +20,7 @@

300

<nav class="navbar navbar-expand-xl navbar-light bg-light">
<div class="container mt-4 mb-3">
<a class="navbar-brand mr-4 pr-2" href="{{
path("homepage') }}">
- 📙 Conference Guestbook
+ 8#128217; {{ 'Conference Guestbook'|trans }}

<button class="navbar-toggler border-0" type="button" data-
toggle="collapse" data-target="#header-menu" aria-
controls="navbarSupportedContent" aria-expanded="false" aria-label="Afficher/
Cacher la navigation"»
--- a/templates/conference/index.html.twig
+++ b/templates/conference/index.html.twig

@@ -4,7 +4,7 @@

{% block body %}
<h2 class="mb-5">
- Give your feedback!
+ {{ 'Give your feedback!'|trans }}
</h2>

{% for row in conferences|batch(4) %}
@@ -21,7 +21,7 @@

<a href="{{ path('conference', { slug:

conference.slug }) }}"
class="btn btn-sm btn-blue stretched-1link">

- View
+ {{ 'view'|trans }}

</div>
</div>

The trans Twig filter looks for a translation of the given input to the
current locale. If not found, it falls back to the default locale as configured
in config/packages/translation.yaml:

framework
default locale: en
translator
default path: '%kernel.project dir%/translations’
fallbacks
en

Notice that the web debug toolbar translation “tab” has turned red:

301

/fx/

I&| Conference Guestbook

AMSTERDAM 2019 PARIS 2020

Give your feedback!

Amsterdam Paris 2020

2019 View
m

Default locale
Missing messages
Fallback messages

Defined messages

200 | @ homepage W nams 2.0MB g E‘a 3 ‘ anon. Y Oms g 1 Server @ 501 X

[t tells us that 3 messages are not translated yet.

Click on the “tab” to list all messages for which Symfony did not find a
translation:

/_profiler/64282d?panel=translation

@ simiony Profir

https://127.0.0.1:8000/fr/

Method: GET ~ HTTP Status: 200 IP: 127.0.0.1 Profiled on: Fri, 06 Dec 2019 :49 +0100 Token: b8dcd0

Last10 Latest O Search Trans'ation

00 Request / Response fl' en
Default locale Fallback locale
Performance
Messages

Defined 0 Fallback 0

These messages are not available for the given locale and cannot be found in the fallback locales. Add them to the
translation catalogue to avoid Symfony outputting untranslated contents

Logs

Locale Domain Times used Message ID Message Preview
Events

fr messages 1 Conference Guestbook Conference Guestbook
Routing

fr messages 1 Give your feedback! Give your feedback!
Cache fr messages 2 View View

Translation

302

28.4 Providing Translations

As you might have seen in config/packages/translation.yaml, translations
are stored under a translations/ root directory, which has been created
automatically for us.

Instead of creating the translation files by hand, wuse the
translation:update command:

$ symfony console translation:update fr --force --domain-messages

This command generates a translation file (--force flag) for the fr locale
and the messages domain. The messages domain contains all application
messages excluding the ones coming from Symfony itself like validation
Or security errors.

Edit the translations/messages+intl-icu.fr.x1f file and translate the
messages in French. Don’t speak French? Let me help you:

--- a/translations/messages+intl-icu.fr.x1f
+++ b/translations/messages+intl-icu.fr.x1f
@@ -7,15 +7,15 @@
<body>
<trans-unit id="LNAVleg" resname="Give your feedback!">
<source>Give your feedback!</source>
<target>_ Give your feedback!</target>
+ <target>Donnez votre avis !</target>
</trans-unit>
<trans-unit id="3Mg5pAF" resname="View">
<source>View</source>
- <target> View</target>
+ <target>Sélectionner</target>
</trans-unit>
<trans-unit id="eOy4.6V" resname="Conference Guestbook">
<source>Conference Guestbook</source>
- <target> Conference Guestbook</target>
+ <target>Livre d'Or pour Conferences</target>
</trans-unit>
</body>
</file>

Note that we won’t translate all templates, but feel free to do so:

303

/fx/

|2 Livre d'Or pour Conferences

AMSTERDAM 2019 PARIS 2020

Donnez votre avis !

Amsterdam Paris 2020
2019

200 | @ homepage 0 nfams 2.0MB g 7 e@ 3 ‘ anon. Server @ 501 X

28.5 Translating Forms

Form labels are automatically displayed by Symfony via the translation
system. Go to a conference page and click on the “Translation” tab of the
web debug toolbar; you should see all labels ready for translation:

304

/_profiler/64282d?panel=translation

@ smiony Profir

https://127.0.0.1:8000/fr/conference/amsterdam-2019

Method: GET HTTP Status: 200 IP: 127.0.0.1 Profiled on: Fri, 06 Dec 2019 12:10:12 +0100 Token: 75e083

Last10 Latest O Search Translat|on

€, Request/ Response
B P fr en
Default locale Fallback locale
é Performance
Messages

Defined 1 Fallback 0

These messages are not available for the given locale and cannot be found in the fallback locales. Add them to the

translation catalogue to avoid Symfony outputting untranslated contents.

Logs

Locale Domain Times used Message ID Message Preview
Events

fr messages 1 Your name Your name
Routing

fr messages 1 Text Text
Cache fr messages 1 Email Email
Translation fr messages 1 Photo Photo
Security fr messages 1 Submit Submit

Twig

28.6 Localizing Dates

If you switch to French and go to a conference webpage that has some
comments, you will notice that the comment dates are automatically
localized. This works because we used the format_datetime Twig filter,
which is locale-aware ({{ comment.createdAt|format datetime('medium',
'short') }}).

The localization works for dates, times (format time), currencies
(format_currency), and numbers (format number) in general (percents,
durations, spell out, ...).

28.7 Translating Plurals

Managing plurals in translations is one usage of the more general problem
of selecting a translation based on a condition.

On a conference page, we display the number of comments: There are

305

2 comments. For 1 comment, we display There are 1 comments, which
is wrong. Modify the template to convert the sentence to a translatable
message:

--- a/templates/conference/show.html.twig
+++ b/templates/conference/show.html.twig
@@ -37,7 +37,7 @@
</div>
</div>
{% endfor %}
- <div>There are {{ comments|length }} comments.</div>
+ <div>{{ 'nb_of comments'|trans({count: comments|length})
}}</divy
{% if previous >= 0 %}
<a href="{{ path('conference', { slug: conference.slug,
offset: previous }) }}">Previous
{% endif %}

For this message, we have used another translation strategy. Instead of
keeping the English version in the template, we have replaced it with
a unique identifier. That strategy works better for complex and large
amount of text.

Update the translation file by adding the new message:

--- a/translations/messages+intl-icu.fr.x1f
+++ b/translations/messages+intl-icu.fr.x1f
@@ -17,6 +17,10 @@
<source>View</source>
<target>Sélectionner</target>
</trans-unit>

+ <trans-unit id="Dg2dPd6" resname="nb_of comments">
+ <source>nb_of_comments</source>
+ <target>{count, plural, =0 {Aucun commentaire.} =1 {1 commentaire.}
other {# commentaires.}}</target>
+ </trans-unit>
</body>
</file>
</x1iff>

We have not finished yet as we now need to provide the English
translation. Create the translations/messages+intl-icu.en.x1f file:

translations/messages-+intl-icu.en.xlf

306

<x1iff xmlns="urn:oasis:names:tc:xliff:document:1.2" version="1.2">
<file source-language="en" target-language="en" datatype="plaintext"”
original="file.ext">
<header>
<tool tool-id="symfony" tool-name="Symfony"/>
</header>
<body>
<trans-unit id="maMQz7W" resname="nb_of comments">
<source>nb of comments</source>
<target>{count. plural. =0 {There are no comments.} one {There is one
comment.} other {There are # comments.}}</target>
</trans-unit>
</body>
</file>
</x1iff>

28.8 Updating Functional Tests

Don’t forget to update the functional tests to take URLs and content
changes into account:

--- a/tests/Controller/ConferenceControllerTest.php

+++ b/tests/Controller/ConferenceControllerTest.php

@@ -11,7 +11,7 @@ class ConferenceControllerTest extends WebTestCase
public function testIndex()

{
$client = static::createClient();
- $client->request('GET", '/');
+ $client->request('GET', '/en/");

$this->assertResponseIsSuccessful();
$this->assertSelectorTextContains('h2', 'Give your feedback');
@@ -20,7 +20,7 @@ class ConferenceControllerTest extends WebTestCase
public function testCommentSubmission()

{
$client = static::createClient();
- $client->request('GET', '/conference/amsterdam-2019');
+ $client->request('GET', '/en/conference/amsterdam-2019");
$client->submitForm('Submit', [
"comment_form[author]' => 'Fabien’,
"comment_form[text]' => 'Some feedback from an automated
functional test’,
@@ -41,7 +41,7 @@ class ConferenceControllerTest extends WebTestCase
public function testConferencePage()

307

$client = static::createClient();
- $crawler = $client->request('GET', '/');
+ $crawler = $client->request('GET', '/en/');

$this->assertCount(2, $crawler->filter('h4'));

@@ -50,6 +50,6 @@ class ConferenceControllerTest extends WebTestCase
$this->assertPageTitleContains('Amsterdam');
$this->assertResponseIsSuccessful();
$this->assertSelectorTextContains('h2', 'Amsterdam 2019');

- $this->assertSelectorExists('div:contains("There are 1 comments")');

+ $this->assertSelectorExists('div:contains("There is one comment")');

Q Going Further

* Translating Messages using the ICU formatter;

* Using Twig translation filters.

308

https://symfony.com/doc/current/translation/message_format.html
https://symfony.com/doc/current/translation/templates.html#translation-filters

Step 29
Managing Performance

Premature optimization is the root of all evil.

Maybe you have already read this quotation before. But I like to cite it in
full:

We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil. Yet we should not pass
up our opportunities in that critical 3%.

—Donald Knuth

Even small performance improvements can make a difference, especially
for e-commerce websites. Now that the guestbook application is ready for
prime time, let’s see how we can check its performance.

The best way to find performance optimizations is to use a profiler. The
most popular option nowadays is Blackfire (full disclaimer: 1 am also the
founder of the Blackfire project).

309

https://blackfire.io/

29.1 Introducing Blackfire

Blackfire is made of several parts:

* A client that triggers profiles (the Blackfire CLI tool or a browser
extension for Google Chrome or Firefox);

* An agent that prepares and aggregates data before sending them to
blackfire.io for display;

e A PHP extension (the probe) that instruments the PHP code.

To work with Blackfire, you first need to sign up.

Install Blackfire on your local machine by running the following quick
installation script:

$ curl https://installer.blackfire.io/ | bash

This installer downloads the Blackfire CLI Tool and then installs the PHP
probe (without enabling it) on all available PHP versions.

Enable the PHP probe for our project:

--- a/php.ini

+++ b/php.ini

@@ -6,3 +6,7 @@ max_execution_time=30
session.use_strict mode=On
realpath _cache tt1=3600
zend.detect _unicode=0ff

+

+[blackfire]
+# use php blackfire.dll on Windows
+extension=blackfire.so

Restart the web server so that PHP can load Blackfire:

$ symfony server:stop
$ symfony server:start -d

The Blackfire CLI Tool needs to be configured with your personal client
credentials (to store your project profiles under your personal account).
Find them at the top of the Settings/Credentials page and execute the
following command by replacing the placeholders:

310

https://blackfire.io/signup
https://blackfire.io/my/settings/credentials

$ blackfire config --client-id=xxx --client-token=xxx

o For full installation instructions, follow the official detailed installation
guide. They are useful when installing Blackfire on a server.

29.2 Setting Up the Blackfire Agent on Docker

The last step is to add the Blackfire agent service in the Docker Compose
stack:

--- a/docker-compose.yaml
+++ b/docker-compose.yaml
@@ -20,3 +20,8 @@ services:
mailcatcher:
image: schickling/mailcatcher
ports: [1025, 1080]

blackfire:
image: blackfire/blackfire
env_file: .env.local
ports: [8707]

+ + + + +

To communicate with the server, you need to get your personal server
credentials (these credentials identify where you want to store the profiles
— you can create one per project); they can be found at the bottom of the
Settings/Credentials page. Store them in a local .env.local file:

BLACKFIRE_SERVER_ID=XXXXXXXX=XXXX=XXXX=XXXX=XXXXXXXXXXXX
BLACKFIRE_SERVER_TOKEN=XX

You can now launch the new container:

$ docker-compose stop
$ docker-compose up -d

311

https://blackfire.io/docs/up-and-running/installation
https://blackfire.io/docs/up-and-running/installation
https://blackfire.io/my/settings/credentials

29.3 Fixing a non-working Blackfire Installation

If you get an error while profiling, increase the Blackfire log level to get
more information in the logs:

--- a/php.ini

+++ b/php.ini

@@ -10,3 +10,4 @@ zend.detect unicode=0ff
[blackfire]

use php blackfire.dll on Windows
extension=blackfire.so

+blackfire.log level=4

Restart the web server:

$ symfony server:stop
$ symfony server:start -d

And tail the logs:

$ symfony server:log

Profile again and check the log output.

29.4 Configuring Blackfire in Production

Blackfire is included by default in all SymfonyCloud projects.

Set up the server credentials as environment variables:

$ symfony var:set BLACKFIRE_SERVER_ID=XXXXXXXX-XXXX-XXXX=XXXX-XXXXXXXXXXXX
$ symfony var:set BLACKFIRE_SERVER_TOKEN=XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

And enable the PHP probe like any other PHP extension:

--- a/.symfony.cloud.yaml
+++ b/.symfony.cloud.yaml
@@ -4,6 +4,7 @@ type: php:7.3

runtime:
extensions:

312

blackfire
xsl

amgp
redis

-+
1 1 1

29.5 Configuring Varnish for Blackfire

Before you can deploy to start profiling, you need a way to bypass the
Varnish HTTP cache. If not, Blackfire will never hit the PHP application.
You are going to authorize only profile requests coming from your local
machine.

Find your current IP address:

$ curl https://ifconfig.me/

And use it to configure Varnish:

--- a/.symfony/config.vcl
+++ b/.symfony/config.vcl
@e -1,3 +1,11 @@

+acl profile {

+ # Authorize the local IP address (replace with the IP found above)
+ "a.b.c.d";

+ # Authorize Blackfire servers

+ "46.51.168.2";

+ "54.75.240.245";

+}

+
sub vcl recv {
set req.backend hint = application.backend();
set req.http.Surrogate-Capability = "abc=ESI/1.0";
@@ -8,6 +14,16 @@ sub vcl recv {
}

return (purge);

}

Don't profile ESI requests
if (req.esi_level > 0) {

unset req.http.X-Blackfire-Query;
}

+ + + + + + +

Bypass Varnish when the profile request comes from a known IP

313

+ if (req.http.X-Blackfire-Query && client.ip ~ profile) {
+ return (pass);
+)

}

sub vcl backend response {

You can now deploy.

29.6 Profiling Web Pages

You can profile traditional web pages from Firefox or Google Chrome via
their dedicated extensions.

On your local machine, don’t forget to disable the HTTP cache in public/
index.php when profiling: if not, you will profile the Symfony HTTP cache
layer instead of your own code:

--- a/public/index.php
+++ b/public/index.php
@@ -24,7 +24,7 @@ if ($trustedHosts = $_SERVER['TRUSTED_HOSTS'] ??
$ ENV['TRUSTED HOSTS'] ?? false
$kernel = new Kernel($ SERVER['APP_ENV'], (bool) $ SERVER['APP DEBUG']);

if ('dev' === $kernel->getEnvironment()) {
- $kernel = new HttpCache($kernel);
+// $kernel = new HttpCache($kernel);

}

$request = Request::createFromGlobals();

To get a better picture of the performance of your application in
production, you should also profile the “production” environment. By
default, your local environment is using the “development” environment,
which adds a significant overhead (mainly to gather data for the web
debug toolbar and the Symfony profiler).

Switching your local machine to the production environment can be done
by changing the APP_ENV environment variable in the .env.local file:

APP_ENV=prod

314

https://blackfire.io/docs/integrations/browsers/index

Or you can use the server:prod command:

$ symfony server:prod

Don’t forget to switch it back to dev when your profiling session ends:

$ symfony server:prod --off

29.7 Profiling API Resources

Profiling the API or the SPA is better done on the CLI via the Blackfire
CLI Tool that you have installed previously:

$ blackfire curl “symfony var:export SYMFONY DEFAULT ROUTE URL api

The blackfire curl command accepts the exact same arguments and
options as cURL.

29.8 Comparing Performance

In the step about “Cache”, we added a cache layer to improve the
performance of our code, but we did not check nor measure the
performance impact of the change. As we are all very bad at guessing
what will be fast and what is slow, you might end up in a situation where
making some optimization actually makes your application slower.

You should always measure the impact of any optimization you do with a
profiler. Blackfire makes it visually easier thanks to its comparison feature.

29.9 Writing Black Box Functional Tests

We have seen how to write functional tests with Symfony. Blackfire can
be used to write browsing scenarios that can be run on demand via
the Blackfire player. Let’s write a scenario that submits a new comment
and validates it via the email link in development, and via the admin in

315

https://curl.haxx.se/docs/manpage.html
https://blackfire.io/docs/cookbooks/understanding-comparisons
https://blackfire.io/player

production.

Create a .blackfire.yaml file with the following content:

.blackfire.yaml

scenarios: |
#!blackfire-player

group login
visit url('/login')
submit button("Sign in")
param username “admin"
param password "admin"
expect status code() == 302

scenario
name "Submit a comment on the Amsterdam conference page"
include login
visit url('/fr/conference/amsterdam-2019")
expect status code() == 200
submit button("Submit")
param comment_form[author] 'Fabien'
param comment form[email] 'me@example.com'
param comment form[text] 'Such a good conference!'
param comment form[photo] file(fake('image', '/tmp', 400, 300,
"cats'), 'awesome-cat.jpg')
expect status code() == 302
follow
expect status code() == 200
expect not(body() matches "/Such a good conference/")
Wait for the workflow to validate the submissions
wait 5000
when env != "prod"
visit url(webmail url ~ '/messages')
expect status code() == 200
set message ids json("[*].id")
with message _id in message ids
visit url(webmail url ~ '/messages/' ~ message id ~ '.html")
expect status code() == 200
set accept url css("table a").first().attr("href")
visit url(accept_url)
we don't check the status code as we can deal
with "old" messages which do not exist anymore
in the DB (would be a 404 then)
when env == "prod"
visit url('/admin/?entity=Comment8action=1ist")
expect status _code() == 200
set comment_ids css('table.table tbody tr').extract('data-id")
with id in comment ids

316

visit url('/admin/comment/review/"' ~ id)
we don't check the status code as we scan all comments,
including the ones already reviewed
visit url('/fr/")
wait 5000
visit url('/fr/conference/amsterdam-2019")
expect body() matches "/Such a good conference/"

Download the Blackfire player to be able to run the scenario locally:

$ curl -OLsS https://get.blackfire.io/blackfire-player.phar
$ chmod +x blackfire-player.phar

Run this scenario in development:

$./blackfire-player.phar run --endpoint="symfony var:export
SYMFONY_DEFAULT_ROUTE_URL™ .blackfire.yaml --variable "webmail url="symfony
var:export MAILCATCHER URL 2>/dev/null™" --variable="env=dev"

Or in production:

$./blackfire-player.phar run --endpoint="symfony env:urls --first
.blackfire.yaml --variable "webmail url=NONE" --variable-"env=prod"

Blackfire scenarios can also trigger profiles for each request and run
performance tests by adding the --blackfire flag.

29.10 Automating Performance Checks

Managing performance is not only about improving the performance of
existing code, it is also about checking that no performance regressions
are introduced.

The scenario written in the previous section can be run automatically in a
Continuous Integration workflow or in production on a regular basis.

On SymfonyCloud, it also allows to run the scenarios whenever you create
a new branch or deploy to production to check the performance of the
new code automatically.

317

https://blackfire.io/docs/integrations/paas/symfonycloud#builds-level-enterprise

e Going Further

* The Blackfire book: PHP Code Performance Explained,
» SymfonyCasts Blackfire tutorial.

318

https://blackfire.io/book
https://symfonycasts.com/screencast/blackfire

Step 30
Discovering Symfony Internals

We have been using Symfony to develop a powerful application for quite
a while now, but most of the code executed by the application comes
from Symfony. A few hundred lines of code versus thousands of lines of
code.

[like to understand how things work behind the scenes. And I have
always been fascinated by tools that help me understand how things
work. The first time I used a step by step debugger or the first time I
discovered ptrace are magical memories.

Would you like to better understand how Symfony works? Time to dig
into how Symfony makes your application tick. Instead of describing how
Symfony handles an HTTP request from a theoretical perspective, which
would be quite boring, we are going to use Blackfire to get some visual
representations and use it to discover some more advanced topics.

30.1 Understanding Symfony Internals with Blackfire

You already know that all HTTP requests are served by a single entry

319

point: the public/index.php file. But what happens next? How controllers
are called?

Let’s profile the English homepage in production with Blackfire via the
Blackfire browser extension:

$ symfony remote:open

Or directly via the command line:

$ blackfire curl “symfony env:urls --first en/

Go to the “Timeline” view of the profile, you should see something
similar to the following:

{} | = Fiterevents | Display markers [3 [EEEEE

<
10ms. 20ms 30ms 40ms 50 ms 59.8ms

10ms 20ms 30ms 40ms. 50ms 508 ms
run_init::public/index.php

HitpKermel::handle
HttpKemel::handieRaw
HitpKerel: filterResponse

Symfony\Component\HttpKemel\Event\RequestEvent | B |

EventDispatcher::callListeners I'1 I conferenceRepository::findAll | Symfony\Co...ponseEvent | |
EntityRepository::findBy EventDispatc...allListeners
BasicEntityPersister::loadAll 1 I |

From the timeline, hover on the colored bars to have more information
about each call; you will learn a lot about how Symfony works:

320

The main entry point is public/index.php;

The Kernel: :handle() method handles the request;
It calls the HttpKernel that dispatches some events;
The first event is RequestEvent;

The ControllerResolver::getController() method is called to
determine which controller should be called for the incoming URL;

The ControllerResolver::getArguments() method is called to
determine which arguments to pass to the controller (the param
converter is called);

* The ConferenceController::index() method is called and most of our
code is executed by this call;

* The ConferenceRepository::findAl1() method gets all conferences
from the database (notice the connection to the database via
PDO:: construct());

* The Twig\Environment::render() method renders the template;

* The ResponseEvent and the FinishRequestEvent are dispatched, but it
looks like no listeners are actually registered as they seem to be really
fast to execute.

The timeline is a great way to understand how some code works; which
is very useful when you get a project developed by someone else.

Now, profile the same page from the local machine in the development
environment:

$ blackfire curl “symfony var:export SYMFONY DEFAULT ROUTE_URL en/

Open the profile. You should be redirected to the call graph view as the
request was really quick and the timeline would be quite empty:

KBundlelHtipCache\HtpCache:
tpCache\Store: restoreResponse 2 Jookup

17.92%
2x
SSSSSSS Corpenentitkamtts o i

..ntiHttpKermefiHtpCache!Store::
lookup

1 callers (2 calls)

x
N 14ps 12.93%

[P ...ttoKerneNHttpCache\Store::
restoreResponse

7.40%

Do you understand what’s going on? The HTTP cache is enabled and
as such, we are profiling the Symfony HTTP cache layer. As the page
is in the cache, HttpCache\Store: :restoreResponse() is getting the HTTP

321

response from its cache and the controller is never called.

Disable the cache layer in public/index.php as we did in the previous
step and try again. You can immediately see that the profile looks very
different:

10ms 20ms. 30ms 40ms. 50ms 60ms 70ms. 75.1ms
run_init::public/index.php

HitpKemelz:handle
HitpKemel::handleRaw
TraceableE ...::dispatch | [l |

Il I e il
1 1 &

emplate::displayWithErmorHandiing
] HitpKemelRu...entStrategy |
LazyLoadingFr...dler::render

HttpKemel::handle@1
HitpKemel::handieRaw@1

wi o

The main differences are the following:

e The TerminateEvent, which was not visible in production, takes a large
percentage of the execution time; looking closer, you can see that this
is the event responsible for storing the Symfony profiler data gathered
during the request;

* Under the ConferenceController::index() call, notice the
SubRequestHandler: :handle() method that renders the ESI (that’s why
we have two calls to Profiler::saveProfile(), one for the main
request and one for the ESI).

Explore the timeline to learn more; switch to the call graph view to have
a different representation of the same data.

As we have just discovered, the code executed in development and
production is quite different. The development environment is slower
as the Symfony profiler tries to gather many data to ease debugging
problems. This is why you should always profile with the production

322

environment, even locally.

Some interesting experiments: profile an error page, profile the / page
(which is a redirect), or an API resource. Each profile will tell you a bit
more about how Symfony works, which class/methods are called, what is
expensive to run and what is cheap.

30.2 Using the Blackfire Debug Addon

By default, Blackfire removes all method calls that are not significant
enough to avoid having big payloads and big graphs. When using

Blackfire as a debugging tool, it is better to keep all calls. This is provided
by the debug addon.

From the command line, use the --debug flag:

$ blackfire --debug curl “symfony var:export SYMFONY DEFAULT ROUTE URL en/
$ blackfire --debug curl "symfony env:urls --first en/

In production, you would see for instance the loading of a file named
.env.local.php:

@ Untitled | @) Ops/0rq Ops/0rq

run_init::app/.env.local.php

2 O
=
=
2 run_init::app/.env.local.php z’l
Z

1 callers (1 calls) ::

ap})l.env.local.php Q

Recommendations
=
S
s

® 2ps main()
" ™ Oks 100.00%
2
g @ 2ps L 1x run_init::public/index.php
@ 1 1x run_init::config/bootstrap.php
1 =
@ o

No callee
[> run_init::

appl.envlocal.php
0.00%

...trineBundle\Registry::__construct

L Propagation 0rq [[ZE3

1
...ge\ExpressionLanguage::register 1
.._init:composer/ClassLoader.php 1
...Loader\LoaderChain::__construct 1
...utionContextFactory::__construct 1
...NRecursiveValidator::__construct 1
..ylnfoCacheExtractor::__construct 1
1

...ropertyInfoExtractor::__construct

323

Where does it come from? SymfonyCloud does some optimizations when
deploying a Symfony application like optimizing the Composer
autoloader (--optimize-autoloader --apcu-autoloader --classmap-
authoritative). It also optimizes environment variables defined in the
.env file (to avoid parsing the file for every request) by generating the
.env.local.php file:

$ symfony run composer dump-env prod
Blackfire is a very powerful tool that helps understand how code is

executed by PHP. Improving performance is just one way to use a
profiler.

324

Step 31
What's Next?

[hope you enjoyed the ride. I have tried to give you enough information
to help you get started faster with your Symfony projects. We have barely
scratched the surface of the Symfony world. Now, dive into the rest of
the Symfony documentation to learn more about each feature we have
discovered together.

Happy Symfony coding!

325

The more I live, the more I learn.
The more I learn, the more I realize, the less I know.
— Michel Legrand

Index

Symbols

.env 157,51,72
.env.local 157,51,72
.env.local.prod 323
.env.test 171

A

Acknowledgments 17

Admin 85

Akismet 155

Annotations
@ApiFilter 271
@ApiResource 268,271
@Groups 268, 271

@ORM\Column 123,180, 75

@ORM\Entity 121,75
@ORM\GeneratedValue 75
@ORM\
HasLifecycleCallbacks 121
@ORM\Id 75
@ORM\JoinColumn 78
@ORM\ManyToOne 78
@ORM\OneToMany 78
@ORM\PrePersist 121
@ORM\UniqueEntity 123

@Route 127,224,226, 295, 59

@dataProvider 164
Apache Cordova 293
APl 267
API Platform 267
Async 179
Autoloader 324

B

Backend 85
Backers
Companies 19
Individuals 20
Bind 140
Blackfire 309, 319
Agent 311
Debug Addon 323
Player 315
Bootstrap 235
Browser Kit 165

C
Cache 217,228

Command
debug:autowiring 169

debug:router 152

doctrine:fixtures:load 172, 173,

174, 169

doctrine:migrations:migrate 12

3,123,124, 180, 82

list 58

make:auth 150

make:command 228

make:controller 59

make:entity 122, 179, 76, 77,

81,73

make:form 131

make:functional-test 165

make:migration 122, 124, 179,

81

make:registration-form 154

make:subscriber 117

make:unit-test 163

make:user 148

messenger:consume 188,

191

messenger:failed:retry 192

messenger:failed:show 192

secrets:generate-keys 160

secrets:set 160, 167,259, 158

security:encode-password 149

workflow:dump 199, 240
Components

Browser Kit 165

Cache 228

CssSelector 170

Debug 52

Dependency Injection 126

DomCrawler 170

Encore 233

Event Dispatcher 116

Form 131

191,

HTTP Client 155
HTTP Kernel 217
Mailer 203
Maker Bundle 57
Messenger 182
Notifier 251,259
Process 227
Profiler 50
Routing 295, 59
Security 147
String 124, 299
Translation 300
VarDumper 54
Workflow 197
Composer 0
Autoloader 324
Optimizations 324
Container
Bind 140
Debug 169
Parameters 247
Test 181
Controller 57
Cordova 293
CORS 274,292
Crawling 170
Cron 245
Cross-Origin
Sharing 274,292

Resource

D

Data Provider 164
Database 65, 71
Dump 188

Debug 52
Container 169
Routing 152

Debugging 319

Dependency Injection 126

Docker 31
Blackfire 311
Mail Catcher 210
PostgreSQL 65
RabbitMQ 187
Redis 108

Docker Compose 31

Doctrine 71
Configuration 71
Entity Listener 125
Fixtures 167
Lifecycle 121
Paginator 100
TestBundle 175

dump 54

E

EasyAdmin 85
Emails 203, 214
Encore 233
Environment Variables 157, 171,
51,72
ESI 220
Event 116
Listener 117
Subscriber 117

F

Fixtures 167

Flash Messages 252

Form 131
Translation 304

Functional Tests 165

G
Git 30

add 43,47
branch 108,113

checkout 108,112,37, 54

clone 36
commit 43,47
diff 37

log 38

merge 112

H

HTTP API 267
HTTP Cache 217
ESI 220

HTTP Cache Headers 217
Symfony Reverse Proxy 218

Varnish 229
HTTP Client 155

IDE 30
Imagine 240
Internals 319

L

Link 99,207
Listener 117
Localization 305
Logger 51
Login 150
Logout 150
Love 24

M

Mailer 203
Makefile 173
Maker Bundle 57

Messenger 182
Mobile 277

Mock 163

N
Notifier 251,259

P

Paginator 100
Panther 176
PHP 31
PHP extensions 31
PHPUnit 163
Data Provider 164
Performance 174
Process 227
Profiler 309, 50

Form Login 150
Session
Redis 108
Slack 259
Slug 124
SPA 277
Cordova 293
Spam 155
Stylesheet 233
Subscriber 117
Symfony CLI 32
cron 250
deploy 112,44, 48
env:create 110
env:debug 112

Profiling env:delete 110,113

APL 315 env:setting:set 214

Web Pages 314 envisync 111
Project logs 194,55

Git Repository 36 open:local:rabbitmq 189
. open:local:webmail 210

open:remote 111,44

RabbitMQ 193, 187 open:remote:rabbitmq 194

Redis 108 nere
Routin project:create 44
" project:delete 45

Debug 152 ject.de

Locale 295 PFO]€(2:t3il6mt 43

Requirements 295 ran

R 57 run -d --watch 191

oute A
: run psql 150, 188, 67, 69
Sass 234 server:ca:install 32

server:log 191, 53
server:prod 314
server:start 280, 42
server:status 191
server:stop 280
ssh 55

Secret 158, 160

Security 147
Access Control 152
Authenticator 150
Authorization 152
Encoding Passwords 149

tunnel:close 194, 69
tunnel:open 194, 69
var:export 70, 72
var:set 160, 250

SymfonyCloud

1

Blackfire 312

Cron 249

Croncape 249
Debugging 112

Emails 214
Environment 110
Environment Variable 160
Environment Variables 70
File Service 243
Initialization 43

Mailer 214
Multi-Applications 291
PostgreSQL 67
RabbitMQ 193

Redis 108

Remote Logs 55
Routes 230, 291

SMTP 214

SSH 55

Secret 160

Tunnel 194, 69
Varnish 229, 313
Workers 194

Templates 93
Terminal 30
Test

Container 181
Crawling 170
Functional Tests 165
Panther 176

Unit Tests 163
Translation 300
Conditions 305
Form 304
Plurals 305
Twig 93
Layout 94
Link 99, 207
Locale 298
Syntax 95
app.request 299
asset 97
block 94, 97, 206, 209
else 97
extends 94, 97, 206, 209
for 94,97,115,127,253
form 133
format_currency 305
format_date 305
format_datetime 97, 305
format_number 305
format_time 305
if 97,102,127
length 97
locale_name 299
path 100, 115, 127, 221, 222,
298
render 221
render_esi 222
trans 300
u.title 0
url 206

U
Unit Tests 163

v

VarDumper 54

Varnish 229 Webpack 233
Workers 194

w Workflow 197

Web Debug Toolbar 50
Web Profiler 50

Not yet on Symfony 5?
Upgrade with confidence!

Symfonylinsight spots the deprecations
in your projects and helps you fix them

& symfony/http-kernel (1) 1> E 1issue

Symfony httpkernel component
Visit package website

SymfonyInsight found 1 issue blocking the upgrade of symfony/http-kernef

The method Symfony\Component\HttpKernel\Fragment\FragmentHandler::setRequest is deprecated
but you call it

Infile bin/parser-twig.php online 25

$loader = new Twig_Loader_String();
$fragment = new FragmentHandler([], true);
I $fragment ->setRequest (new Request());
$httKernelExtension = new Extension\HttpKernelExtension($fragment);
$tranlationExtension = new Extension\TranslationExtension(new Translator('en'));

$routingExtension = new Extension\RoutingExtension(new UrlGenerator(new RouteCollection(), new
RequestContext()));

o i 4
Upgrade Monitor Be notified of
continuously technical debt security issues

Get started on insight.symfony.com

0 blackfire

Performance
Profiling and Testing
for Symfony

Profile,
Test,
Fix,
Repeat.

kernel/config/init
52,36%

D com/api/config
15,12%

> blackfire.io

	Symfony 5: The Fast Track
	Fabien Potencier

	Contents at a Glance
	Table of Contents
	Acknowledgments¶
	Translators¶
	Company Backers¶
	Individual Backers¶
	Family Love¶

	What is it about?¶
	Checking your Work Environment¶
	A Computer¶
	Opinionated Choices¶
	IDE¶
	Terminal¶
	Git¶
	PHP¶
	Composer¶
	Docker and Docker Compose¶
	Symfony CLI¶

	Introducing the Project¶
	Revealing the Project¶
	Learning is Doing¶
	Looking at the Final Infrastructure Diagram¶
	Getting the Project Source Code¶
	Navigating the Source Code¶

	Going from Zero to Production¶
	Initializing the Project¶
	Creating some Public Resources¶
	Launching a Local Web Server¶
	Adding a favicon¶
	Preparing for Production¶
	Going to Production¶

	Adopting a Methodology¶
	Implementing a Git Strategy¶
	Deploying to Production Continuously¶

	Troubleshooting Problems¶
	Installing more Dependencies¶
	Understanding Symfony Environments¶
	Managing Environment Configurations¶
	Logging all the Things¶
	Discovering the Symfony Debugging Tools¶
	Configuring your IDE¶
	Debugging Production¶

	Creating a Controller¶
	Being Lazy with the Maker Bundle¶
	Choosing a Configuration Format¶
	Generating a Controller¶
	Adding an Easter Egg¶

	Setting up a Database¶
	Adding PostgreSQL to Docker Compose¶
	Starting Docker Compose¶
	Accessing the Local Database¶
	Adding PostgreSQL to SymfonyCloud¶
	Accessing the SymfonyCloud Database¶
	Exposing Environment Variables¶

	Describing the Data Structure¶
	Configuring Doctrine ORM¶
	Understanding Symfony Environment Variable Conventions¶
	Changing the Default DATABASE_URL Value in .env¶
	Creating Entity Classes¶
	Linking Entities¶
	Adding more Properties¶
	Migrating the Database¶
	Updating the Local Database¶
	Updating the Production Database¶

	Setting up an Admin Backend¶
	Configuring EasyAdmin¶
	Customizing EasyAdmin¶

	Building the User Interface¶
	Installing Twig¶
	Using Twig for the Templates¶
	Using Twig in a Controller¶
	Creating the Page for a Conference¶
	Linking Pages Together¶
	Paginating the Comments¶
	Refactoring the Controller¶

	Branching the Code¶
	Adopting a Git Workflow¶
	Describing your Infrastructure¶
	Creating Branches¶
	Storing Sessions in Redis¶
	Deploying a Branch¶
	Debugging Production Deployments before Deploying¶
	Testing Production Deployments before Deploying¶
	Merging to Production¶
	Cleaning up¶

	Listening to Events¶
	Adding a Website Header¶
	Discovering Symfony Events¶
	Implementing a Subscriber¶
	Sorting Conferences by Year and City¶

	Managing the Lifecycle of Doctrine Objects¶
	Defining Lifecycle Callbacks¶
	Adding Slugs to Conferences¶
	Generating Slugs¶
	Defining a Complex Lifecycle Callback¶
	Configuring a Service in the Container¶
	Using Slugs in the Application¶

	Accepting Feedback with Forms¶
	Generating a Form Type¶
	Displaying a Form¶
	Customizing a Form Type¶
	Validating Models¶
	Handling a Form¶
	Uploading Files¶
	Debugging Forms¶
	Displaying Uploaded Photos in the Admin Backend¶
	Excluding Uploaded Photos from Git¶
	Storing Uploaded Files on Production Servers¶

	Securing the Admin Backend¶
	Defining a User Entity¶
	Generating a Password for the Admin User¶
	Creating an Admin¶
	Configuring the Security Authentication¶
	Adding Authorization Access Control Rules¶
	Authenticating via the Login Form¶

	Preventing Spam with an API¶
	Signing up on Akismet¶
	Depending on Symfony HTTPClient Component¶
	Designing a Spam Checker Class¶
	Using Environment Variables¶
	Storing Secrets¶
	Checking Comments for Spam¶
	Managing Secrets in Production¶

	Testing¶
	Writing Unit Tests¶
	Writing Functional Tests for Controllers¶
	Defining Fixtures¶
	Loading Fixtures¶
	Crawling a Website in Functional Tests¶
	Working with a Test Database¶
	Submitting a Form in a Functional Test¶
	Reloading the Fixtures¶
	Automating your Workflow with a Makefile¶
	Resetting the Database after each Test¶
	Using a real Browser for Functional Tests¶
	Running Black Box Functional Tests with Blackfire¶

	Going Async¶
	Flagging Comments¶
	Understanding Messenger¶
	Coding a Message Handler¶
	Restricting Displayed Comments¶
	Going Async for Real¶
	Adding RabbitMQ to the Docker Stack¶
	Restarting Docker Services¶
	Consuming Messages¶
	Exploring the RabbitMQ Web Management Interface¶
	Running Workers in the Background¶
	Retrying Failed Messages¶
	Deploying RabbitMQ¶
	Running Workers on SymfonyCloud¶

	Making Decisions with a Workflow¶
	Describing Workflows¶
	Using a Workflow¶

	Emailing Admins¶
	Setting an Email for the Admin¶
	Sending a Notification Email¶
	Extending the Notification Email Template¶
	Generating Absolute URLs in a Symfony Command¶
	Wiring a Route to a Controller¶
	Using a Mail Catcher¶
	Accessing the Webmail¶
	Managing Long-Running Scripts¶
	Sending Emails Asynchronously¶
	Testing Emails¶
	Sending Emails on SymfonyCloud¶

	Caching for Performance¶
	Adding HTTP Cache Headers¶
	Activating the Symfony HTTP Cache Kernel¶
	Avoiding SQL Requests with ESI¶
	Purging the HTTP Cache for Testing¶
	Grouping similar Routes with a Prefix¶
	Caching CPU/Memory Intensive Operations¶
	Profiling and Comparing Performance¶
	Configuring a Reverse Proxy Cache on Production¶
	Enabling ESI Support on Varnish¶
	Purging the Varnish Cache¶

	Styling the User Interface with Webpack¶
	Using Sass¶
	Leveraging Bootstrap¶
	Styling the HTML¶
	Building Assets¶

	Resizing Images¶
	Optimizing Images with Imagine¶
	Adding a new Step in the Workflow¶
	Storing Uploaded Data in Production¶

	Running Crons¶
	Cleaning up Comments¶
	Using Class Constants, Container Parameters, and Environment Variables¶
	Creating a CLI Command¶
	Setting up a Cron on SymfonyCloud¶

	Notifying by all Means¶
	Sending Web Application Notifications in the Browser¶
	Notifying Admins by Email¶
	Chatting with Admins¶
	Going Asynchronous across the Board¶
	Notifying Users by Email¶

	Exposing an API with API Platform¶
	Installing API Platform¶
	Exposing an API for Conferences¶
	Exposing an API for Comments¶
	Restricting Comments exposed by the API¶
	Configuring CORS¶

	Building an SPA¶
	Creating the Application¶
	Creating the SPA Main Template¶
	Running an SPA in the Browser¶
	Adding a Router to handle States¶
	Styling the SPA¶
	Fetching Data from the API¶
	Deploying the SPA in Production¶
	Configuring CORS for the SPA¶
	Using Cordova to build a Smartphone Application¶

	Localizing an Application¶
	Internationalizing URLs¶
	Adding a Locale Switcher¶
	Translating the Interface¶
	Providing Translations¶
	Translating Forms¶
	Localizing Dates¶
	Translating Plurals¶
	Updating Functional Tests¶

	Managing Performance¶
	Introducing Blackfire¶
	Setting Up the Blackfire Agent on Docker¶
	Fixing a non-working Blackfire Installation¶
	Configuring Blackfire in Production¶
	Configuring Varnish for Blackfire¶
	Profiling Web Pages¶
	Profiling API Resources¶
	Comparing Performance¶
	Writing Black Box Functional Tests¶
	Automating Performance Checks¶

	Discovering Symfony Internals¶
	Understanding Symfony Internals with Blackfire¶
	Using the Blackfire Debug Addon¶

	What’s Next?¶
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	P
	R
	S
	T
	U
	V
	W

